ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamic Predictions for Pb+Pb Collisions at 5.02 A TeV

88   0   0.0 ( 0 )
 نشر من قبل Scott McDonald
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Predictions and comparisons of hadronic flow observables for Pb+Pb collisions at 2.76 A TeV and 5.02 A TeV are presented using a hydrodynamics + hadronic cascade hybrid approach. Initial conditions are generated via a new formulation of the IP-Glasma model and then evolved using relativistic viscous hydrodynamics and finally fed into transport cascade in the hadronic phase. The results of this work show excellent agreement with the recent charged hadron anisotropic flow measurements from the ALICE collaboration of Pb+Pb collisions at 5.02 A TeV. Event-by-event distributions of charged hadron v n , flow event-plane correlations, and flow factorization breaking ratios are compared with existing measurements at 2.76 A TeV, and are predicted at 5.02 A TeV. Further predictions of identified hadron observables (for both light and multi-strange hadrons), such as p T -spectra and anisotropic flow coefficients, are presented.



قيم البحث

اقرأ أيضاً

We compute predictions for various low-transverse-momentum bulk observables in $sqrt{s_{NN}} = 5.023$ TeV Pb+Pb collisions at the LHC from the event-by-event next-to-leading-order perturbative-QCD + saturation + viscous hydrodynamics (EKRT) model. In particular, we consider the centrality dependence of charged hadron multiplicity, flow coefficients of the azimuth-angle asymmetries and correlations of event-plane angles. The centrality dependencies of the studied observables are predicted to be very similar to those at 2.76 TeV, and the magnitudes of the flow coefficients and event-plane angle correlations are predicted to be close to those at 2.76 TeV. The flow coefficients may, however, offer slightly more discriminating power on the temperature dependence of QCD matter viscosity than the 2.76 TeV measurements. Our prediction for the multiplicity in the 0-5% centrality class, obtained using the two temperature-dependent shear-viscosity-to-entropy ratios that give the best overall fit to RHIC and LHC data is $dN_{rm ch}/detabig|_{|eta|le 0.5} =1876dots2046$. We also predict a power-law increase from 200 GeV Au+Au collisions at RHIC to 2.76 and 5.023 TeV Pb+Pb collisions at the LHC, $dN_{rm ch}/detabig|_{|eta|le 0.5} propto s^{0.164dots0.174}$.
Predictions made in Albacete {it et al} prior to the LHC $p+$Pb run at $sqrt{s_{NN}} = 5$ TeV are compared to currently available data. Some predictions shown here have been updated by including the same experimental cuts as the data. Some additional predictions are also presented, especially for quarkonia, that were provided to the experiments before the data were made public but were too late for the original publication are also shown here.
114 - R. Vogt 2019
Predictions have been compiled for the $p+$Pb LHC runs, focusing on production of hard probes in cold nuclear matter. These predictions were first made for the $sqrt{s_{_{NN}}} = 5.02$ TeV $p+$Pb run and were later compared to the available data. A s imilar set of predictions were published for the 8.16~TeV $p+$Pb run. A selection of the predictions are reviewed here.
Predictions for charged hadron, identified light hadron, quarkonium, photon, jet and gauge bosons in p+Pb collisions at sqrt s_NN = 5 TeV are compiled and compared. When test run data are available, they are compared to the model predictions.
In this paper, we study and predict flow observables in 2.76 A TeV and 5.02 A TeV Pb +Pb collisions, using the iEBE-VISHNU hybrid model with TRENto and AMPT initial conditions and with different forms of the QGP transport coefficients. With properly chosen and tuned parameter sets, our model calculations can nicely describe various flow observables in 2.76 A TeV Pb +Pb collisions, as well as the measured flow harmonics of all charged hadrons in 5.02 A TeV Pb +Pb collisions. We also predict other flow observables, including $v_n(p_T)$ of identified particles, event-by-event $v_n$ distributions, event-plane correlations, (Normalized) Symmetric Cumulants, non-linear response coefficients and $p_T$-dependent factorization ratios, in 5.02 A TeV Pb+Pb collisions. We find many of these observables remain approximately the same values as the ones in 2.76 A TeV Pb+Pb collisions. Our theoretical studies and predictions could shed light to the experimental investigations in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا