ﻻ يوجد ملخص باللغة العربية
We explore the possibility of the formation of globular clusters under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (10^6-10^7 solar masses) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like globular clusters (GCs) if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semi-cosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a supersonic infall cloud, since photo-dissociating radiation suppresses the formation of hydrogen molecules in the shadowed regions and the regions are compressed by UV heated ambient gas. The properties of resultant star clusters match those of GCs. On the other hand, in weak UV radiation fields, dark matter-dominated star clusters with low stellar density form due to the self-shielding effect as well as the positive feedback by ionizing photons. Thus, we conclude that the supersonic infall under a strong UV background is a potential mechanism to form GCs.
Formation of supermassive stars (SMSs) with mass ~10^4 Msun is a promising pathway to seed the formation of supermassive black holes in the early universe. The so-called direct-collapse (DC) model postulates that such an SMS forms in a hot gas cloud
The radiation hydrodynamics equations for smoothed particle hydrodynamics are derived by operator splitting the radiation and hydrodynamics terms, including necessary terms for material motion, and discretizing each of the sets of equations separatel
We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, thre
(Abridged) Stars more massive than $20-30M_{odot}$ are so luminous that the radiation force on the cooler, more opaque outer layers can balance or exceed the force of gravity. These near or super-Eddington outer envelopes represent a long standing ch
Cosmic Dawn II (CoDa II) is a new, fully-coupled radiation-hydrodynamics simulation of cosmic reionization and galaxy formation and their mutual impact, to redshift $z < 6$. With $4096^3$ particles and cells in a 94 Mpc box, it is large enough to mod