ﻻ يوجد ملخص باللغة العربية
By means of the fossil record method implemented through Pipe3D, we reconstruct the global and radial stellar mass growth histories (MGHs) of an unprecedentedly large sample of galaxies, ranging from dwarf to giant objects, from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We confirm that the main driver of the global MGHs is mass, with more massive galaxies assembling their masses earlier (downsizing), though for a given mass, the global MGHs segregate by color, specific star formation rate (sSFR), and morphological type. From the inferred radial mean MGHs, we find that at the late evolutionary stages (or for fractions of assembled mass larger than ~ 80%), the innermost regions formed stars on average earlier than the outermost ones (inside-out). At earlier epochs, when the age resolution of the method becomes poor, the mass assembly seems to be spatially homogeneous or even in the outside-in mode, specially for the red/quiescent/early-type galaxies. The innermost MGHs are in general more regular (less scatter around the mean) than the outermost ones. For dwarf and low-mass galaxies, we do not find evidence of an outside-in formation mode; instead their radial MGHs are very diverse most of the time, with periods of outside- in and inside-out modes (or strong radial migration), suggesting this an episodic SF history. Blue/star-forming/late-type galaxies present on average a significantly more pronounced inside-out formation mode than red/quiescent/early-type galaxies, independently of mass. We discuss our results in the light of the processes of galaxy formation, quenching, and radial migration. We discuss also on the uncertainties and biases of the fossil record method and how they could affect our results.
Bars in galaxies are thought to stimulate both inflow of material and radial mixing along them. Observational evidence for this mixing has been inconclusive so far however, limiting the evaluation of the impact of bars on galaxy evolution. We now use
We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star forming regions in a representative sample of 550 nearby galaxies in the stellar mass range $rm 10^9-10^{11.5} M_odot$ with resolved spectroscopic data from the
We study the internal gradients of stellar population properties within $1.5;R_{rm e}$ for a representative sample of 721 galaxies with stellar masses ranging between $10^{9};M_{odot}$ to $10^{11.5};M_{odot}$ from the SDSS-IV MaNGA IFU survey. Throug
We present the stellar surface mass density {it vs.} gas metallicity ($Sigma_*-Z$) relation for more than 500,000 spatially-resolved star-forming resolution elements (spaxels) from a sample of 653 disk galaxies included in the SDSS IV MaNGA survey. W
We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, i.e. M*, SFR and sSFR. According to their sSFR, we further