ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast 3C 279 gamma flares by a merging medium size black hole jet aligned to the AGN one by tidal torque?

63   0   0.0 ( 0 )
 نشر من قبل Daniele Fargion
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The shorter-than-Schwarzschild 3C 279 variability flare on June 2015 is very puzzling. Its nature cannot be due to any NS merging nor to a medium sized (hundred million solar mass) BH collapse. Our preliminary model is based on the long-life (a third of a year) merging of a medium size BH (hundred of solar mass) jet spiralling toward the largest AGN one, (billion solar mass), that is dragging by tidal torques the medium small size BH jet along the main AGN 3C 279 one. The tidal torque is aligning both jets toward Earth. The twin overlapping blazars may offer at once a long and a short scale variability consistent with the surprising Fermi discovers.



قيم البحث

اقرأ أيضاً

172 - F. K. Liu 2009
Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nucle i is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $propto t^{-5/3}$, would stop at a time $T_{rm tr} simeq eta T_{rm b}$. Here, $eta sim0.25$ and $T_{rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{rm r} simeq xi T_b$, where $xi sim 1$. Both $eta$ and $xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.
Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries o f its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.
Bright and fast gamma-ray flares with hard spectra have been recently detected from the blazar 3C 279, with apparent GeV luminosities up to $10^{49}$ erg/s. The source is observed to flicker on timescales of minutes with no comparable optical-UV coun terparts. Such observations challenge current models of high-energy emissions from 3C 279 and similar blazar sources that are dominated by relativistic jets along our line of sight with bulk Lorentz factors up to $ Gamma sim 20$ launched by supermassive black holes. We compute and discuss a model based on a clumpy jet comprising strings of compact plasmoids as indicated by radio observations. We follow the path of the synchrotron radiations emitted in the optical - UV bands by relativistic electrons accelerated around the plasmoids to isotropic Lorentz factors $gamma sim 1000$. These primary emissions are partly reflected back by a leading member in the string that acts as a moving mirror for the approaching companions. Around the plasmoids, shrinking emph{gap} transient overdensities of seed photons build up. These are upscattered into the GeV range by inverse Compton interactions with the relativistic electrons accelerated in situ. We show that such a combined process produces bright gamma-ray flares with minor optical to X-ray enhancements. Main features of our model include: bright gamma-ray flares with risetimes as short as a few minutes, occurring at distances of order $10^{18} $ cm from the central black hole; Compton dominance at GeV energies by factors up to some $10^2$; little reabsorption from local photon-photon interactions.
We consider misaligned accretion discs formed after tidal disruption events occurring when a star encounters a supermassive rotating black hole. We use the linear theory of warped accretion discs to find the disc shape when the stream produced by the disrupted star provides a source of mass and angular momentum that is misaligned with the black hole. The evolution of the surface density and aspect ratio is found from a one dimensional vertically averaged model. We extend previous work which assumed a quasi-stationary disc to allow unrestricted dynamical propagation of disc tilt and twist through time dependent backgrounds. We consider a smaller value of the viscosity parameter, $alpha =0.01,$ finding the dynamics varies significantly. At early times the disc inclination is found to be nearly uniform at small radii where the aspect ratio is large. However, since torques arise from the Lense-Thirring effect and the stream there is non uniform precession. We propose a simple model for this requiring only the background surface density and aspect ratio. At these times the $alpha sim 0.01$ disc exhibits a new feature. An inclined hot inner region joins an outer low inclination cool region via a thin transition front propagating outwards with a speed exceeding that of bending waves in the cool region. These waves accumulate where the propagation speeds match producing an inclination spike separating inner and outer discs. At late times a sequence of quasi-stationary configurations approximates disc shapes at small radii. We discuss observational implications of our results.
Optical transient surveys have led to the discovery of dozens of stellar tidal disruption events (TDEs) by massive black hole in the centers of galaxies. Despite extensive searches, X-ray follow-up observations have produced no or only weak X-ray det ections in most of them. Here we report the discovery of delayed X-ray brightening around 140 days after the optical outburst in the TDE OGLE16aaa, followed by several flux dips during the decay phase. These properties are unusual for standard TDEs and could be explained by the presence of supermassive black hole binary or patchy obscuration. In either scenario, the X-rays can be produced promptly after the disruption but are blocked in the early phase, possibly by a radiation-dominated ejecta which leads to the bulk of optical and ultraviolet emission. Our findings imply that the reprocessing is important in the TDE early evolution, and X-ray observations are promising in revealing supermassive black hole binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا