ترغب بنشر مسار تعليمي؟ اضغط هنا

(De-)Composing Causality in Labeled Transition Systems

207   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we introduce a notion of counterfactual causality in the Halpern and Pearl sense that is compositional with respect to the interleaving of transition systems. The formal framework for reasoning on what caused the violation of a safety property is established in the context of labeled transition systems and Hennessy Milner logic. The compositionality results are devised for non-communicating systems.

قيم البحث

اقرأ أيضاً

We propose a way of reasoning about minimal and maximal values of the weights of transitions in a weighted transition system (WTS). This perspective induces a notion of bisimulation that is coarser than the classic bisimulation: it relates states tha t exhibit transitions to bisimulation classes with the weights within the same boundaries. We propose a customized modal logic that expresses these numeric boundaries for transition weights by means of particular modalities. We prove that our logic is invariant under the proposed notion of bisimulation. We show that the logic enjoys the finite model property and we identify a complete axiomatization for the logic. Last but not least, we use a tableau method to show that the satisfiability problem for the logic is decidable.
For one-safe Petri nets or condition/event-systems, a process as defined by Carl Adam Petri provides a notion of a run of a system where causal dependencies are reflected in terms of a partial order. Goltz and Reisig have generalised this concept for nets where places carry multiple tokens, by distinguishing tokens according to their causal history. However, this so-called individual token interpretation is often considered too detailed. Here we identify a subclass of Petri nets, called structural conflict nets, where no interplay between conflict and concurrency due to token multiplicity occurs. For this subclass, we define abstract processes as equivalence classes of Goltz-Reisig processes. We justify this approach by showing that there is a largest abstract process if and only if the underlying net is conflict-free with respect to a canonical notion of conflict.
We study the relation between process calculi that differ in their either synchronous or asynchronous interaction mechanism. Concretely, we are interested in the conditions under which synchronous interaction can be implemented using just asynchronou s interactions in the pi-calculus. We assume a number of minimal conditions referring to the work of Gorla: a good encoding must be compositional and preserve and reflect computations, deadlocks, divergence, and success. Under these conditions, we show that it is not possible to encode synchronous interactions without introducing additional causal dependencies in the translation.
A well-known problem in Petri net theory is to formalise an appropriate causality-based concept of process or run for place/transition systems. The so-called individual token interpretation, where tokens are distinguished according to their causal hi story, giving rise to the processes of Goltz and Reisig, is often considered too detailed. The problem of defining a fully satisfying more abstract concept of process for general place/transition systems has so-far not been solved. In this paper, we recall the proposal of defining an abstract notion of process, here called BD-process, in terms of equivalence classes of Goltz-Reisig processes, using an equivalence proposed by Best and Devillers. It yields a fully satisfying solution for at least all one-safe nets. However, for certain nets which intuitively have different conflicting behaviours, it yields only one maximal abstract process. Here we identify a class of place/transition systems, called structural conflict nets, where conflict and concurrency due to token multiplicity are clearly separated. We show that, in the case of structural conflict nets, the equivalence proposed by Best and Devillers yields a unique maximal abstract process only for conflict-free nets. Thereby BD-processes constitute a simple and fully satisfying solution in the class of structural conflict nets.
Motivated by the response pattern for property specifications and applications within flexible workflow management systems, we report upon an initial study of modal and mixed transition systems in which the must transitions are interpreted as must ev entually, and in which implementations can contain may behaviors that are resolved at run-time. We propose Transition Systems with Responses (TSRs) as a suitable model for this study. We prove that TSRs correspond to a restricted class of mixed transition systems, which we refer to as the action-deterministic mixed transition systems. We show that TSRs allow for a natural definition of deadlocked and accepting states. We then transfer the standard definition of refinement for mixed transition systems to TSRs and prove that refinement does not preserve deadlock freedom. This leads to the proposal of safe refinements, which are those that preserve deadlock freedom. We exemplify the use of TSRs and (safe) refinements on a small medication workflow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا