ترغب بنشر مسار تعليمي؟ اضغط هنا

Metamorphoses of electronic structure of FeSe-based superconductors (Review article)

68   0   0.0 ( 0 )
 نشر من قبل Alexander Kordyuk
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structure of FeSe, the simplest iron based superconductor (Fe-SC), conceals a potential of dramatic increase of Tc that realizes under pressure or in a single layer film. This is also the system where nematicity, the phenomenon of a keen current interest, is most easy to study since it is not accompanied by the antiferomagnetic transition like in all other Fe-SCs. Here we overview recent experimental data on electronic structure of FeSe-based superconductors: isovalently doped crystals, intercalates, and single layer films, trying to clarify its topology and possible relation of this topology to superconductivity. We argue that the marked differences between the experimental and calculated band structures for all FeSe compounds can be described by a hoping selective renormalization model for a spin/orbital correlated state that may naturally explain both the evolution of the band structure with temperature and nematicity.



قيم البحث

اقرأ أيضاً

116 - K. Tanaka , F. Marsiglio 1999
Motivated by recent experiments on Al nanoparticles, we have studied the effects of fixed electron number and small size in nanoscale superconductors, by applying the canonical BCS theory for the attractive Hubbard model in two and three dimensions. A negative ``gap in particles with an odd number of electrons as observed in the experiments is obtained in our canonical scheme. For particles with an even number of electrons, the energy gap exhibits shell structure as a function of electron density or system size in the weak-coupling regime: the gap is particularly large for ``magic numbers of electrons for a given system size or of atoms for a fixed electron density. The grand canonical BCS method essentially misses this feature. Possible experimental methods for observing such shell effects are discussed.
We present ARPES data taken from the structurally simplest representative of iron-based superconductors, FeSe, in a wide temperature range. Apart from the variations related to the nematic transition, we detect very pronounced shifts of the dispersio ns on the scale of hundreds of kelvins. Remarkably, upon warming the sample up, the band structure has a tendency to relax to the one predicted by conventional band structure calculations, right opposite to what is intuitively expected. Our findings shed light on the origin of the dominant interaction shaping the electronic states responsible for high-temperature superconductivity in iron-based materials.
FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here we provide an overview on the current understanding of the electronic structure of FeSe, focusing in particular on its low energy electronic structure as determined from angular resolved photoemission spectroscopy, quantum oscillations and magnetotransport measurements of single crystal samples. We discuss the unique place of FeSe amongst iron-based superconductors, being a multi-band system exhibiting strong orbitally-dependent electronic correlations and unusually small Fermi surfaces, prone to different electronic instabilities. We pay particular attention to the evolution of the electronic structure which accompanies the tetragonal-orthorhombic structural distortion of the lattice around 90 K, which stabilizes a unique nematic electronic state. Finally, we discuss how the multi-band multi-orbital nematic electronic structure has an impact on the understanding of the superconductivity, and show that the tunability of the nematic state with chemical and physical pressure will help to disentangle the role of different competing interactions relevant for enhancing superconductivity.
131 - Michael E. Flatte 1996
The electronic structure near defects (such as impurities) in superconductors is explored using a new, fully self-consistent technique. This technique exploits the short-range nature of the impurity potential and the induced change in the superconduc ting order parameter to calculate features in the electronic structure down to the atomic scale with unprecedented spectral resolution. Magnetic and non-magnetic static impurity potentials are considered, as well as local alterations in the pairing interaction. Extensions to strong-coupling superconductors and superconductors with anisotropic order parameters are formulated.
We provide a band structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on FeSe, assuming mean-field like s and/or d-wave orbital ordering at the structural transition. We show how the resulti ng model provides a consistent explanation of the temperature dependence of the measured Knight shift and the spin-relaxation rate. Furthermore, the superconducting gap structure obtained from spin fluctuation theory exhibits nodes on the electron pockets, consistent with the V-shaped density of states obtained by tunneling spectroscopy on this material, and the temperature dependence of the London penetration depth. Our studies prove that the recent experimental observations of the electronic properties of FeSe are consistent with orbital order, but leave open the microscopic origin of the unusual band structure of this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا