ﻻ يوجد ملخص باللغة العربية
Weyl semimetals are gapless three-dimensional topological materials where two bands touch at an even number of points in the bulk Brillouin zone. These semimetals exhibit topologically protected surface Fermi arcs, which pairwise connect the projected bulk band touchings in the surface Brillouin zone. Here, we analyze the quasiparticle interference patterns of the Weyl phase when time-reversal symmetry is explicitly broken. We use a multi-band $d$-electron Hubbard Hamiltonian on a pyrochlore lattice, relevant for the pyrochlore iridate R$_2$Ir$_2$O$_7$ (where R is a rare earth). Using exact diagonalization, we compute the surface spectrum and quasiparticle interference (QPI) patterns for various surface terminations and impurities. We show that the spin and orbital texture of the surface states can be inferred from the absence of certain backscattering processes and from the symmetries of the QPI features for non-magnetic and magnetic impurities. Furthermore, we show that the QPI patterns of the Weyl phase in pyrochlore iridates may exhibit additional interesting features that go beyond those found previously in TaAs.
Strong electronic interactions and spin orbit coupling can be conducive for realizing novel broken symmetry phases supporting quasiparticles with nontrivial band topology. 227 pyrochlore iridates provide a suitable material platform for studying such
Motivated by the proposal of a Weyl-semimetal phase in pyrochlore iridates, we consider a Hubbard-type model on the pyrochlore lattice. To shed light on the question as to why such a state has not been observed experimentally, its robustness is analy
We consider a two-orbital tight-binding model defined on a layered three-dimensional hexagonal lattice to investigate the properties of topological nodal lines and their associated drumhead surface states. We examine these surface states in centrosym
Nonequilibrium many-body dynamics is becoming one of the central topics of modern condensed matter physics. Floquet topological states were suggested to emerge in photodressed band structures in the presence of periodic laser driving. Here we propose
We study possible Weyl semimetals of strongly-correlated electrons by investigating magnetotransport properties in pyrochlore R2Ir2O7 (R=rare-earth ions), choosing three types of R ions to design the exchange coupling scheme between R 4f and Ir 5d mo