ﻻ يوجد ملخص باللغة العربية
A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhavens Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 um. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam compared to the wavelength of the radiation, but with short rise time, to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation. For the THz pulse we obtain and compare with calculations: the central frequency, the bandwidth, and the spectral power---compared to a diffraction radiation background signal.
A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhavens Accelerator Test Facility
Dielectric structures driven by laser-generated terahertz (THz) pulses may hold the key to overcoming the technological limitations of conventional particle accelerators and with recent experimental demonstrations of acceleration, compression and str
We consider electromagnetic radiation of a charged particle bunch moving uniformly along a corrugated planar metallic surface. It is assumed that the wavelengths under consideration are much larger than the period and the depth of corrugation. Using
A problem of diffraction of a symmetrical transverse magnetic mode $ text{TM}_{0l} $ by an open-ended cylindrical waveguide corrugated inside is considered. A depth and a period of corrugations are supposed to be much less than the wavelength and the
We investigate radiation of a charged particle bunch moving through a corrugated planar conductive surface. It is assumed that the corrugation period and depth are much less than the wavelengths under consideration. In this case, the corrugated struc