ﻻ يوجد ملخص باللغة العربية
Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex systems components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because such networks links are formed explicitly based on those known communities. However, there are no planted communities in real world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. Here, we show that metadata are not the same as ground truth, and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structure.
Bipartite networks are a common type of network data in which there are two types of vertices, and only vertices of different types can be connected. While bipartite networks exhibit community structure like their unipartite counterparts, existing ap
We consider the network constraints on the bounds of the assortativity coefficient, which measures the tendency of nodes with the same attribute values to be interconnected. The assortativity coefficient is the Pearsons correlation coefficient of nod
We develop a Bayesian hierarchical model to identify communities in networks for which we do not observe the edges directly, but instead observe a series of interdependent signals for each of the nodes. Fitting the model provides an end-to-end commun
Modularity based community detection encompasses a number of widely used, efficient heuristics for identification of structure in networks. Recently, a belief propagation approach to modularity optimization provided a useful guide for identifying non
Recent progress towards unraveling the hidden geometric organization of real multiplexes revealed significant correlations across the hyperbolic node coordinates in different network layers, which facilitated applications like trans-layer link predic