ترغب بنشر مسار تعليمي؟ اضغط هنا

Recovery of $L^p$-potential in the plane

89   0   0.0 ( 0 )
 نشر من قبل Evgeny Lakshtanov L
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An inverse problem for the two-dimensional Schrodinger equation with $L^p_{com}$-potential, $p>1$, is considered. Using the $overline{partial}$-method, the potential is recovered from the Dirichlet-to-Neumann map on the boundary of a domain containing the support of the potential. We do not assume that the potential is small or that the Faddeev scattering problem does not have exceptional points. The paper contains a new estimate on the Faddeev Green function that immediately implies the absence of exceptional points near the origin and infinity when $vin L^p_{com}$.



قيم البحث

اقرأ أيضاً

We consider inverse potential scattering problems where the source of the incident waves is located on a smooth closed surface outside of the inhomogeneity of the media. The scattered waves are measured on the same surface at a fixed value of the ene rgy. We show that this data determines the bounded potential uniquely.
In this article we study the problem of a non-relativistic particle in the presence of a singular potential in the noncommutative plane. The potential contains a term proportional to $1/R^2$, where $R^2$ is the squared distance to the origin in the n oncommutative plane. We find that the spectrum of energies is non analytic in the noncommutativity parameter $theta$.
We study the behavior of the soliton solutions of the equation i((partial{psi})/(partialt))=-(1/(2m)){Delta}{psi}+(1/2)W_{{epsilon}}({psi})+V(x){psi} where W_{{epsilon}} is a suitable nonlinear term which is singular for {epsilon}=0. We use the stron g nonlinearity to obtain results on existence, shape, stability and dynamics of the soliton. The main result of this paper (Theorem 1) shows that for {epsilon}to0 the orbit of our soliton approaches the orbit of a classical particle in a potential V(x).
107 - Jan Rozendaal , Mark Veraar 2017
We study polynomial and exponential stability for $C_{0}$-semigroups using the recently developed theory of operator-valued $(L^{p},L^{q})$ Fourier multipliers. We characterize polynomial decay of orbits of a $C_{0}$-semigroup in terms of the $(L^{p} ,L^{q})$ Fourier multiplier properties of its resolvent. Using this characterization we derive new polynomial decay rates which depend on the geometry of the underlying space. We do not assume that the semigroup is uniformly bounded, our results depend only on spectral properties of the generator. As a corollary of our work on polynomial stability we reprove and unify various existing results on exponential stability, and we also obtain a new theorem on exponential stability for positive semigroups.
We present a condition on the self-interaction term that guaranties the existence of the global in time solution of the Cauchy problem for the semilinear Klein-Gordon equation in the Friedmann-Lama$hat{i}$tre-Robertson-Walker model of the contracting universe. For the Klein-Gordon equation with the Higgs potential we give a lower estimate for the lifespan of solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا