ترغب بنشر مسار تعليمي؟ اضغط هنا

$Suzaku$ and $XMM-Newton$ observations of a newly-discovered early-stage cluster merger 1E2216.0-0401 and 1E2215.7-0404

89   0   0.0 ( 0 )
 نشر من قبل Hiroki Akamatsu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. Akamatsu




اسأل ChatGPT حول البحث

We present the results of $Suzaku$ and $XMM-Newton$ X-ray observations of the cluster pair 1E2216.0-0401 and 1E2215.7-0404. We discover an X-ray bridge between the clusters. $Suzaku$ and $XMM-Newton$ observations revealed that each cluster hosts gas with moderate temperature of $kT_{1E2216.0-0401}=$4.8$pm$0.1 keV and $kT_{1E2215.7-0404}=$5.8$pm$0.2 keV, respectively. On the other hand, the bridge region shows a remarkably high temperature ({it kT}=6.6$pm$0.5 keV). Furthermore, at the position of the bridge, we detected an enhancement in the wavelet-decomposed soft-band (0.5-4.0 keV) $XMM-Newton$ image at 3 sigma significance, this is most likely due to a compression of the intracluster medium (ICM) as a consequence of the merging activity. This X-ray intensity and temperature enhancement are not consistent with those expected from a late phase, but are in agreement with the predictions by numerical simulations of an early phase merger. From the temperature jump at the location of the bridge, the Mach number is estimated to be ${cal M}=1.4pm0.1$, which corresponds to a shock propagation velocity of about 1570 km/s. From the shock properties, we estimate that core-passage will occur in 0.3-0.6 Gyr and that the age of the shock structure is 50--100 Myr. Based on the measured properties of the ICM at the bridge and estimation of timescales, we find indications for non-equilibrium ionization. We also discover possible diffuse radio emission located between the merging clusters. Combining the radio, X-ray, and optical image data, we speculate that the detected radio sources are most likely related to the merger event. Thus, 1E2216.0-0401 and 1E2215.7-0404 is a new example of an early phase cluster merger with remarkable characteristics.

قيم البحث

اقرأ أيضاً

We present the first broadband 0.3-25.0 kev X-ray observations of the bright ultraluminous X-ray source (ULX) Holmberg II X-1, performed by NuSTAR, XMM-Newton and Suzaku in September 2013. The NuSTAR data provide the first observations of Holmberg II X-1 above 10 keV, and reveal a very steep high-energy spectrum, similar to other ULXs observed by NuSTAR to date. These observations further demonstrate that ULXs exhibit spectral states that are not typically seen in Galactic black hole binaries. Comparison with other sources implies that Holmberg II X-1 accretes at a high fraction of its Eddington accretion rate, and possibly exceeds it. The soft X-ray spectrum (E<10 keV) appears to be dominated by two blackbody-like emission components, the hotter of which may be associated with an accretion disk. However, all simple disk models under-predict the NuSTAR data above ~10 keV and require an additional emission component at the highest energies probed, implying the NuSTAR data does not fall away with a Wien spectrum. We investigate physical origins for such an additional high-energy emission component, and favor a scenario in which the excess arises from Compton scattering in a hot corona of electrons with some properties similar to the very-high state seen in Galactic binaries. The observed broadband 0.3-25.0 keV luminosity inferred from these epochs is Lx = (8.1+/-0.1)e39 erg/s, typical for Holmberg II X-1, with the majority of the flux (~90%) emitted below 10 keV.
Suzaku observed a central region and five offset regions within 0.2 r180 in the Fornax cluster, a nearby poor cluster, and XMM-Newton mapped the cluster with 15 pointings out to 0.3 r180. The distributions of O, Mg, Si, S, and Fe in the intracluster medium (ICM) were studied with Suzaku, and those of Fe and temperature were studied with XMM. The temperature of the ICM gradually decreases with radius from 1.3 keV at 0.04 r180 to 1 keV at 0.2-0.3 r180. If the new solar abundances of Lodders et al. (2003) and a single-temperature plasma model are adopted, O, Mg, Si, S, and Fe show similar abundances: 0.4-0.6 solar within 0.02-0.2 r180. This Fe abundance is similar to those at 0.1-0.2 r180 in rich clusters and other groups of galaxies. At 0.2-0.3 r180, the Fe abundance becomes 0.2-0.3 solar. A two-temperature plasma model yields ICM abundances that are higher by a factor of 1.2-1.5, but gives similar abundance ratios among O, Mg, Si, S, and Fe. The northern region has a lower ICM temperature and higher brightness and Fe abundance, whereas the southern region has a higher ICM temperature and lower brightness and Fe abundance. These results indicate that the cD galaxy may have traveled from the north because of recent dynamical evolution. The cumulative oxygen- and iron-mass-to-light ratios within 0.3 r180 are more than an order of magnitude lower than those of rich clusters and some relaxed groups of galaxies. Past dynamical evolution might have hindered the strong concentration of hot gas in the Fornax clusters central region. Scatter in the IMLR and similarity in the element abundances in the ICM of groups and clusters of galaxies indicate early metal synthesis.
A growing group of low-mass X-ray binaries are found to be accreting at very-faint X-ray luminosities of <1E36 erg/s (2-10 keV). Once such system is the new X-ray transient IGR J17494-3030. We present Swift and XMM-Newton observations obtained during its 2012 discovery outburst. The Swift observations trace the peak of the outburst, which reached a luminosity of ~7 E35 (D/8 kpc)^2 erg/s (2-10 keV). The XMM-Newton data were obtained when the outburst had decayed to an intensity of ~ 8 E34 (D/8 kpc)^2 erg/s. The spectrum can be described by a power-law with an index of ~1.7 and requires an additional soft component with a black-body temperature of ~0.37 keV (contributing ~20% to the total unabsorbed flux in the 0.5-10 keV band). Given the similarities with high-quality spectra of very-faint neutron star low-mass X-ray binaries, we suggest that the compact primary in IGR J17494-3030 is a neutron star. Interestingly, the source intensity decreased rapidly during the ~12 hr XMM-Newton observation, which was accompanied by a decrease in inferred temperature. We interpret the soft spectral component as arising from the neutron star surface due to low-level accretion, and propose that the observed decline in intensity was the result of a decrease in the mass-accretion rate onto the neutron star.
We disentangle X-ray disk reflection from complex line-of-sight absorption in the nearby Seyfert NGC 4151, using a suite of Suzaku, NuSTAR, and XMM-Newton observations. Extending upon earlier published work, we pursue a physically motivated model usi ng the latest angle-resolved version of the lamp-post geometry reflection model relxillCp_lp together with a Comptonization continuum. We use the long-look simultaneous Suzaku/NuSTAR observation to develop a baseline model wherein we model reflected emission as a combination of lamp-post components at the heights of 1.2 and 15.0 gravitational radii. We argue for a vertically extended corona as opposed to two compact and distinct primary sources. We find two neutral absorbers (one full-covering and one partial-covering), an ionized absorber ($log xi = 2.8$), and a highly-ionized ultra-fast outflow, which have all been reported previously. All analyzed spectra are well described by this baseline model. The bulk of the spectral variability between 1 keV and 6 keV can be accounted for by changes in the column density of both neutral absorbers, which appear to be degenerate and inversely correlated with the variable hard continuum component flux. We track variability in absorption on both short (2 d) and long ($sim$1 yr) timescales; the observed evolution is either consistent with changes in the absorber structure (clumpy absorber at distances ranging from the broad line region (BLR) to the inner torus or a dusty radiatively driven wind) or a geometrically stable neutral absorber that becomes increasingly ionized at a rising flux level. The soft X-rays below 1 keV are dominated by photoionized emission from extended gas that may act as a warm mirror for the nuclear radiation.
We present results from recent Suzaku and Chandra X-ray, and MMT optical observations of the strongly merging double cluster A1750 out to its virial radius, both along and perpendicular to a putative large-scale structure filament. Some previous stud ies of individual clusters have found evidence for ICM entropy profiles that flatten at large cluster radii, as compared with the self-similar prediction based on purely gravitational models of hierarchical cluster formation, and gas fractions that rise above the mean cosmic value. Weakening accretion shocks and the presence of unresolved cool gas clumps, both of which are expected to correlate with large scale structure filaments, have been invoked to explain these results. In the outskirts of A1750, we find entropy profiles that are consistent with self-similar expectations, and gas fractions that are consistent with the mean cosmic value, both along and perpendicular to the putative large scale filament. Thus, we find no evidence for gas clumping in the outskirts of A1750, in either direction. This may indicate that gas clumping is less common in lower temperature (kT~4keV), less massive systems, consistent with some (but not all) previous studies of low mass clusters and groups. Cluster mass may therefore play a more important role in gas clumping than dynamical state. Finally, we find evidence for diffuse, cool (<1 keV) gas at large cluster radii (R200) along the filament, which is consistent with the expected properties of the denser, hotter phase of the WHIM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا