ﻻ يوجد ملخص باللغة العربية
The increasing number of synoptic surveys made by small robotic telescopes, such as the photometric Catalina Real-Time Transient Survey (CRTS), represents a unique opportunity for the discovery of variable sources and improves the statistical samples of such classes of objects. Our goal is the discovery of magnetic Cataclysmic Variables (mCVs). These are rare objects, which probe interesting accretion scenarios controlled by the white dwarf magnetic field. In particular, improved statistics of mCVs would help to address open questions on their formation and evolution. We performed an optical spectroscopy survey to search for signatures of magnetic accretion in 45 variable objects selected mostly from the CRTS. In this sample we found 32 CVs, 22 being mCV candidates from which 13 are previously unreported as such. If the proposed classifications are confirmed, it would represent an increase of 4% in the number of known polars and 12% in the number of known IPs. A fraction of our initial sample was classified as extragalactic sources or other types of variable stars by the inspection of the identification spectra. Despite the inherent complexity in identifying a source as a mCV, variability-based selection followed by spectroscopic snapshot observations has proved to be an efficient strategy for their discoveries, being a relatively inexpensive approach in terms of telescope time.
This is the second paper of a series presenting our search for magnetic Cataclysmic Variables (mCVs) among candidates selected mostly from the Catalina Real-Time Transient Survey (CRTS). We present the identification spectra, obtained at the SOAR Tel
Highly sensitive and precise X-ray imaging from Chandra, combined with the superb spatial resolution of HST optical images, dramatically enhances our empirical understanding of compact binaries such as cataclysmic variables and low mass X-ray binarie
The NSFs Karl G. Jansky Very Large Array (VLA) is used to observe 122 magnetic cataclysmic variables (MCVs) during three observing semesters (13B, 15A, and 18A). We report radio detections of 33 stars with fluxes in the range 6--8031 uJy. Twenty-eigh
We have obtained HST/STIS data for a total of eleven polars as part of a program aimed to compile a homogeneous database of high-quality far-ultraviolet (FUV) spectra for a large number of cataclysmic variables (CVs). Of the eleven polars, eight were
We use the complete, X-ray flux-limited ROSAT Bright Survey (RBS) to measure the space density of magnetic cataclysmic variables (mCVs). The survey provides complete optical identification of all sources with count rate >0.2/s over half the sky ($|b|