ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting AdS/CFT at a finite radial cut-off

185   0   0.0 ( 0 )
 نشر من قبل Pranjal Nayak
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit AdS/CFT at finite radial cut-off, specifically in the context of double trace perturbations, $mathbb{O}_n$= $mathbb{O}(x) (partial^2)^{n} {mathcal O}(x)$, with arbitrary $n$. As well-known, the standard GKPW prescription, applied to a finite radial cut-off, leads to contact terms in correlators. de Haro et al (arXiv:hep-th/0002230) introduced bulk counterterms to remove these. However, this prescription yields additional terms in the correlator corresponding to spurious double trace deformations. Further, if we view GKPW prescription coupled with the prescription in arXiv:hep-th/0002230, in terms of a boundary wavefunction, we find that it is incompatible with radial Schrodinger evolution (in the spirit of holographic Wilsonian RG). We consider a more general wavefunction satisfying the Schrodinger equation, and find that generically such wavefunctions generate both (a) double trace deformations and (b) contact terms. However, we find that there exist special choices of these wavefunctions, amounting to a new AdS/CFT prescription at a finite cut-off, so that both (a) and (b) are removed and we obtain a pure power law behaviour for the correlator. We compare these special wavefunctions with a specific RG scheme in field theory. We give a geometric interpretation of these wavefunctions; these correspond to some specific smearing of boundary points in the Witten diagrams. We present a comprehensive calculation of exact double-trace beta-functions for all couplings $mathbb{O}_n$ and match with a holographic computation using the method described above. The matching works with a mapping between the field theory and bulk couplings; such a map is highly constrained because the beta-functions are quadratic and exact on both sides. We generalize standard double-trace Wilson-Fisher flow to the space of the infinite number of couplings.



قيم البحث

اقرأ أيضاً

We define a holographic dual to the Donaldson-Witten topological twist of $mathcal{N}=2$ gauge theories on a Riemannian four-manifold. This is described by a class of asymptotically locally hyperbolic solutions to $mathcal{N}=4$ gauged supergravity i n five dimensions, with the four-manifold as conformal boundary. Under AdS/CFT, minus the logarithm of the partition function of the gauge theory is identified with the holographically renormalized supergravity action. We show that the latter is independent of the metric on the boundary four-manifold, as required for a topological theory. Supersymmetric solutions in the bulk satisfy first order differential equations for a twisted $Sp(1)$ structure, which extends the quaternionic Kahler structure that exists on any Riemannian four-manifold boundary. We comment on applications and extensions, including generalizations to other topological twists.
121 - P.L. Ferrari 2017
We consider the totally asymmetric simple exclusion process with initial conditions generating a shock. The fluctuations of particle positions are asymptotically governed by the randomness around the two characteristic lines joining at the shock. Unl ike in previous papers, we describe the correlation in space-time emph{without} employing the mapping to the last passage percolation, which fails to exists already for the partially asymmetric model. We then consider a special case, where the asymptotic distribution is a cut-off of the distribution of the largest eigenvalue of a finite GUE matrix. Finally we discuss the strength of the probabilistic and physically motivated approach and compare it with the mathematical difficulties of a direct computation.
We study the AdS/CFT thermodynamics of the spatially isotropic counterpart of the Bjorken similarity flow in d-dimensional Minkowski space with d>=3, and of its generalisation to linearly expanding d-dimensional Friedmann-Robertson-Walker cosmologies with arbitrary values of the spatial curvature parameter k. The bulk solution is a nonstatic foliation of the generalised Schwarzschild-AdS black hole with a horizon of constant curvature k. The boundary matter is an expanding perfect fluid that satisfies the first law of thermodynamics for all values of the temperature and the spatial curvature, but it admits a description as a scale-invariant fluid in local thermal equilibrium only when the inverse Hawking temperature is negligible compared with the spatial curvature length scale. A Casimir-type term in the holographic energy-momentum tensor is identified from the threshold of black hole formation and is shown to take different forms for k>=0 and k<0.
We construct a $p$-adic analog to AdS/CFT, where an unramified extension of the $p$-adic numbers replaces Euclidean space as the boundary and a version of the Bruhat-Tits tree replaces the bulk. Correlation functions are computed in the simple case o f a single massive scalar in the bulk, with results that are strikingly similar to ordinary holographic correlation functions when expressed in terms of local zeta functions. We give some brief discussion of the geometry of $p$-adic chordal distance and of Wilson loops. Our presentation includes an introduction to $p$-adic numbers.
We compute the full dimension of Konishi operator in planar N=4 SYM theory it for a wide range of couplings, from weak to strong coupling regime, and predict the subleading terms in its strong coupling asymptotics. For this purpose we solve numerical ly the integral form of the AdS/CFT Y-system equations for the exact energies of excited states proposed by us and A.Kozak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا