ﻻ يوجد ملخص باللغة العربية
We study N = 2* theories with gauge group U(N) and use equivariant localization to calculate the quantum expectation values of the simplest chiral ring elements. These are expressed as an expansion in the mass of the adjoint hypermultiplet, with coefficients given by quasi-modular forms of the S-duality group. Under the action of this group, we construct combinations of chiral ring elements that transform as modular forms of definite weight. As an independent check, we confirm these results by comparing the spectral curves of the associated Hitchin system and the elliptic Calogero-Moser system. We also propose an exact and compact expression for the 1-instanton contribution to the expectation value of the chiral ring elements.
A solution to the infinite coupling problem for N=2 conformal supersymmetric gauge theories in four dimensions is presented. The infinitely-coupled theories are argued to be interacting superconformal field theories (SCFTs) with weakly gauged flavor
We calculate the instanton partition function of the four-dimensional N=2* SU(N) gauge theory in the presence of a generic surface operator, using equivariant localization. By analyzing the constraints that arise from S-duality, we show that the effe
We study half-BPS surface operators in supersymmetric gauge theories in four and five dimensions following two different approaches. In the first approach we analyze the chiral ring equations for certain quiver theories in two and three dimensions, c
We investigate epsilon-deformed N=2 superconformal gauge theories in four dimensions, focusing on the N=2* and Nf=4 SU(2) cases. We show how the modular anomaly equation obeyed by the deformed prepotential can be efficiently used to derive its non-pe
Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although th