ترغب بنشر مسار تعليمي؟ اضغط هنا

Andreev spectrum of a Josephson junction with spin-split superconductors

90   0   0.0 ( 0 )
 نشر من قبل Dario Bercioux
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Andreev bound states and charge transport in a Josephson junction between two superconductors with intrinsic exchange fields are studied. We find that for a parallel configuration of the exchange fields in the superconductors the discrete spectrum consists of two pairs of spin-split states. The Josephson current in this case is mainly carried by bound states. In contrast, for the antiparallel configuration we find that there is no spin-splitting of the bound states and that for phase differences smaller than certain critical value there are no bound states at all. Hence the supercurrent is only carried by states in the continuous part of the spectrum. Our predictions can be tested by performing a tunneling spectroscopy of a weak link between two spin-split superconductors.



قيم البحث

اقرأ أيضاً

Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a non-linear effect and usually requires a large voltage. Here we study the electron cooling in hete rostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.
261 - M. Houzet 2008
The Josephson current in a diffusive superconductor/ferromagnet/superconductor junction with precessing magnetization is calculated within the quasiclassical theory of superconductivity. When the junction is phase-biased, a stationary current (withou t a.c. component) can flow through it despite the non-equilibrium condition. A large critical current is predicted due to a dynamically induced long range triplet proximity effect. Such effect could be observed in a conventional hybrid device close to the ferromagnetic resonance.
108 - Shin-ichi Hikino 2018
We theoretically investigate the magnetization inside a normal metal containing the Rashba spin-orbit interaction (RSOI) induced by the proximity effect in an s-wave superconductor/normal metal/ferromagnetic metal/s-wave superconductor (S/N/F/S) Jose phson junction. By solving the linearized Usadel equation taking account of the RSOI,we find that the direction of the magnetization induced by the proximity effect in N can be reversed by tuning the RSOI.Moreover, we also find that the direction of the magnetization inside N can be reversed by changing the superconducting phase difference, i.e., Josephson phase. From these results, it is expected that the dependence of the magnetization on the RSOI and Josephson phase can be applied to superconducting spintronics.
We investigate transport properties of junctions between two spin-split superconductors linked by a spin-polarized tunneling barrier. The spin-splitting fields in the superconductors (S) are induced by adjacent ferromagnetic insulating (FI) layers wi th arbitrary magnetization. The aim of this study is twofold: On the one hand, we present a theoretical framework based on the quasiclassical Greens functions to calculate the Josephson and quasiparticle current through the junctions in terms of the different parameters characterizing it. Our theory predicts qualitative new results for the tunneling differential conductance, $dI/dV$, when the spin-splitting fields of the two superconductors are non-collinear. We also discuss how junctions based on FI/S can be used to realize anomalous Josephson junctions with a constant geometric phase shift in the current-phase relation. As a result, they may exhibit spontaneous triplet supercurrents in the absence of a phase difference between the S electrodes. On the other hand, we show results of planar tunneling spectroscopy of a EuS/Al/Al$_2$O$_3$/EuS/Al junction and use our theoretical model to reproduce the obtained $dI/dV$ curves. Comparison between theory and experiment reveals information about the intrinsic parameters of the junction, such as the size of the superconducting order parameter, spin-splitting fields and spin relaxation, and also about properties of the two EuS films, as their morphology, domain structure, and magnetic anisotropy.
The fractional Josephson effect is known to be a characteristic phenomenon of topological Josephson junctions hosting Majorana zero modes (MZMs), where the Josephson current has a $4pi$ (rather than a $2pi$) periodicity in the phase difference betwee n the two topological superconductors. We introduce a one-dimensional model of a topological superconductor/normal-metal/superconductor (SNS) junction with the normal-metal (N) region of finite length, which is intermediate regime between the short- and long-junction limits. Assuming weak tunneling at the SN interfaces, we investigate resonance and finite-size effects on the fractional Josephson effect due to the existence of several discrete energy levels in the N region in which wavefunctions have oscillating nodal structure. Through careful analysis of the sign change in the transmission amplitudes through the junction and the fermion parity of the two MZMs, we find that the fractional Josephson current is proportional to the parity of total fermion numbers including both filled normal levels and two MZMs. Furthermore, we elucidate drastic enhancement of the Josephson current due to the resonance between a discrete level in the N region and MZMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا