ﻻ يوجد ملخص باللغة العربية
Density Estimation Trees (DETs) are decision trees trained on a multivariate dataset to estimate its probability density function. While not competitive with kernel techniques in terms of accuracy, they are incredibly fast, embarrassingly parallel and relatively small when stored to disk. These properties make DETs appealing in the resource-expensive horizon of the LHC data analysis. Possible applications may include selection optimization, fast simulation and fast detector calibration. In this contribution I describe the algorithm, made available to the HEP community in a RooFit implementation. A set of applications under discussion within the LHCb Collaboration are also briefly illustrated.
Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.
We consider the problem of estimating the predictive density of future observations from a non-parametric regression model. The density estimators are evaluated under Kullback--Leibler divergence and our focus is on establishing the exact asymptotics
Here we present a new non-parametric approach to density estimation and classification derived from theory in Radon transforms and image reconstruction. We start by constructing a forward problem in which the unknown density is mapped to a set of one
Conditional density estimation generalizes regression by modeling a full density f(yjx) rather than only the expected value E(yjx). This is important for many tasks, including handling multi-modality and generating prediction intervals. Though fundam
Disease surveillance is essential not only for the prior detection of outbreaks but also for monitoring trends of the disease in the long run. In this paper, we aim to build a tactical model for the surveillance of dengue, in particular. Most existin