ﻻ يوجد ملخص باللغة العربية
The Lambda polarization, the analyzing power, and the Lambda spin transfer coefficient of the reaction pp -> p K+ Lambda were measured at beam momenta of 2.70 GeV/c and 2.95 GeV/c, corresponding to excess energies of 122 MeV and 204 MeV. While the analyzing power and the spin transfer coefficient do not change significantly with the excess energy, the Lambda polarization varies strongly and changes its sign. As this is the first measurement of polarization observables below an excess energy of 200 MeV, the change of the sign of the Lambda polarization was not observed before. The high statistics of the data (~200 k events for each momentum) enables detailed studies of the dependence of the Lambda polarization and the analyzing power on the center of mass momentum of the particles. The results of the spin transfer coefficient are in qualitative agreement with the DISTO experiment. The Lambda polarization data of 2.95 GeV/c are only conform with the DISTO experiment, while both the 2.70 GeV/c and 2.95 GeV/c data differ strongly from all previous measurements, whether exclusive or inclusive.
A new high precision measurement of the reaction pp -> pK+Lambda at a beam momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular
Exclusive data on the reactions pp -> ppK+K- and pp -> pK+ Lambda/Sigma0 have been taken at the cooler synchrotron COSY close to threshold. At equal excess energies, an enhancement of the Lambda/Sigma0 ratio by one order of magnitude has been observe
The Compton double-polarization observable $Sigma_{2z}$ has been measured for the first time in the $Delta(1232)$ resonance region using a circularly polarized photon beam incident on a longitudinally polarized target at the Mainz Microtron. This pap
One of the remaining problems within the standard model is to gain a good understanding of the low energy regime of QCD, where perturbative methods fail. One key towards a better understanding is baryon spectroscopy. Unfortunately, in the past most b
The reaction $gamma , p rightarrow K^0_S,Sigma^+$ is studied in the photon energy range from threshold. Linearly polarised photon beams from coherent bremsstrahlung enabled the first measurement of photon beam asymmetries in this reaction up to $E_ga