ترغب بنشر مسار تعليمي؟ اضغط هنا

Broad-band dielectric response of BTZ-BCT piezoceramics: soft and central mode behaviour

44   0   0.0 ( 0 )
 نشر من قبل Stanislav Kamba
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dielectric properties of BTZ-BCT ceramics were probed in the frequency range from 10 Hz to 100 THz in a broad temperature range (10-900 K). Polar soft phonon observed in infrared spectra softens with cooling, however below 500 K its frequency becomes temperature independent. Simultaneously, a central mode activates in terahertz and microwave spectra; and it actually drives the ferroelectric phase transitions. Consequently, the phase transition strongly resemble a crossover between the dispacive and order-disorder type. The central mode vanishes below 200 K. The dielectric relaxation in the radiofrequency and microwave range anomalously broadens on cooling below T$_{C1}$ resulting in the nearly frequency independent dielectric loss bleow 200 K. This broadening comes from a broad frequency distribution of ferroelectric domain wall vibrations. Raman spectra reveal new phonons below 400 K, i.e. already 15 K above T$_{C1}$. Several weak modes are detected in the paraelectric phase up to 500 K in the Raman spectra. Activation of these modes is ascribed to the presence of polar nanoclusters in the material.



قيم البحث

اقرأ أيضاً

79 - S. Kamba , M. Kempa , V. Bovtun 2004
The relaxor ferroelectric PbMg1/Nb2/3O3 was investigated by means of broad-band dielectric and Fourier Transform Infrared (FTIR) transmission spectroscopy in the frequency range from 1 MHz to 15 THz at temperatures between 20 and 900 K using PMN film s on infrared transparent sapphire substrates. While thin film relaxors display reduced dielectric permittivity at low frequencies, their high frequency intrinsic or lattice response is shown to be the same as single crystal/ceramic specemins. It was observed that in contrast to the results of inelastic neutron scattering, the optic soft mode was underdamped at all temperatures. On heating, the TO1 soft phonon followed the Cochran law with an extrapolated critical temperature equal to the Burns temperature of 670 K and softened down to 50 cm-1. Above 450 K the soft mode frequency leveled off and slightly increased above the Burns temperature. A central mode, describing the dynamics of polar nanoclusters appeared below the Burns temperature at frequencies near the optic soft mode and dramatically slowed down below 1 MHz on cooling below room temperature. It broadened on cooling, giving rise to frequency independent losses in microwave and lower frequency range below the freezing temperature of 200 K. In addition, a new heavily damped mode appeared in the FTIR spectra below the soft mode frequency at room temperature and below. The origin of this mode as well as the discrepancy between the soft mode damping in neutron and infrared spectra is discussed.
229 - S. Kamba , D. Nuzhnyy , P. Vanek 2007
Infrared reflectivity and time-domain terahertz transmission spectra of EuTiO3 ceramics revealed a polar optic phonon at 6 - 300K, whose softening is fully responsible for the recently observed quantum paraelectric behaviour. Even if our EuTiO3 ceram ics show lower permittivity than the single crystal due to a reduced density and/or small amount of secondary pyrochlore Eu2Ti2O7 phase, we confirmed the magnetic field dependence of the permittivity, also slightly smaller than in single crystal. Attempt to reveal the soft phonon dependence at 1.8K on the magnetic field up to 13T remained below the accuracy of our infrared reflectivity experiment.
We study theoretically the optical properties of quantum tubes, one-dimensional semiconductor nanostructures where electrons and holes are confined to a cylindrical shell. In these structures, which bridge between 2D and 1D systems, the electron-hole interaction may be modulated by a dielectric substance outside the quantum tube and possibly inside its core. We use the exact Greens function for the appropriate dielectric configuration and exact diagonalization of the electron-hole interaction within an effective mass description to predict the evolution of the exciton binding energy and oscillator strength. Contrary to the homogeneous case, in dielectrically modulated tubes the exciton binding is a function of the tube diameter and can be tuned to a large extent by structure design and proper choice of the dielectric media.
Two-dimensional charge carrier accumulation at oxide heterointerfaces presents a paradigm shift for oxide electronics. Like a capacitor, interfacial charge buildup couples to an electric field across the dielectric medium. To prevent the so-called po lar catastrophe, several charge screening mechanisms emerge, including polar distortions and interfacial intermixing which reduce the sharpness of the interface. Here, we examine how atomic intermixing at oxide interfaces affect the balance between polar distortions and electric potential across the dielectric medium. We find that intermixing moves the peak charge distribution away from the oxide/oxide interface; thereby changing the direction of polar distortions away from this boundary with minimal effect on the electric field. This opposing electric field and polar distortions is equivalent to the transient phase transition tipping point observed in double well ferroelectrics; resulting in an anomalous dielectric response -- a possible signature of local negative differential capacitance, with implications for designing dissipationless oxide electronics.
We carry out first-principles calculations of the nonlinear dielectric response of short-period ferroelectric superlattices. We compute and store not only the total polarization, but also the Wannier-based polarizations of individual atomic layers, a s a function of electric displacement field, and use this information to construct a model capable of predicting the nonlinear dielectric response of an arbitrary superlattice sequence. We demonstrate the successful application of our approach to superlattices composed of SrTiO$_3$, CaTiO$_3$, and BaTiO$_3$ layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا