ﻻ يوجد ملخص باللغة العربية
Spontaneous symmetry breaking is deeply related to dimensionality of system. The Neel order going with spontaneous breaking of $U(1)$ symmetry is safely allowed at any temperature for three-dimensional systems but allowed only at zero temperature for purely two-dimensional systems. We closely investigate how smoothly the ordering process of the three-dimensional system is modulated into that of the two-dimensional one with reduction of dimensionality, considering spatially anisotropic quantum antiferromagnets. We first show that the Neel temperature is kept finite even in the two-dimensional limit although the Neel order is greatly suppressed for low-dimensionality. This feature of the Neel temperature is highly nontrivial, which dictates how the order parameter is squashed under the reduction of dimensionality. Next we investigate this dimensional modulation of the order parameter. We develop our argument taking as example a coupled spin-ladder system relevant for experimental studies. The ordering process is investigated multidirectionally using theoretical techniques of a mean-field method combined with analytical (exact solutions of quantum field theories) or numerial (density-matrix renormalization-group) method, a variational method, a renormalization-group study, linear spin-wave theory, and quantum Monte-Carlo simulation. We show that these methods independent of each other lead to the same conclusion about the dimensional modulation.
Quasi-two dimensional itinerant fermions in the Anti-Ferro-Magnetic (AFM) quantum-critical region of their phase diagram, such as in the Fe-based superconductors or in some of the heavy-fermion compounds, exhibit a resistivity varying linearly with t
We re-examine the experimental results for the magnetic response function $chi({bf q}, E, T)$, for ${bf q}$ around the anti-ferromagnetic vectors ${bf Q}$, in the quantum-critical region, obtained by inelastic neutron scattering, on an Fe-based super
Counterintuitive order-disorder phenomena emerging in antiferromagnetically coupled spin systems have been reported in various studies. Here we perform a systematic effective field theory analysis of two-dimensional bipartite quantum Heisenberg antif
Although the isotope effect in superconducting materials is well-documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the p
By means of nuclear spin-lattice relaxation rate 1/T1, we follow the spin dynamics as a function of the applied magnetic field in two gapped one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl2-4SC(NH2)2 and the spin-ladd