ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonance production in Pomeron-Pomeron collisions at the LHC

103   0   0.0 ( 0 )
 نشر من قبل Rainer Schicker M
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A model for Pomeron-Pomeron total cross section in the resonance region $sqrt{M^{2}} le$ 5 GeV is presented. This model is based on Regge poles from the Pomeron and two different $f$ trajectories, and includes the isolated f$_{0}(500)$ resonance in the region $sqrt{M^{2}}lesssim 1$ GeV. A slowly varying background is included. The presented Pomeron-Pomeron cross section is not directly measurable, but is an essential ingredient for calculating exclusive resonance production at the LHC.

قيم البحث

اقرأ أيضاً

102 - R. Fiore 2015
A Regge pole model for Pomeron-Pomeron total cross section in the resonance region $sqrt{M^2}le$ 5 GeV is presented. The cross section is saturated by direct-channel contributions from the Pomeron as well as from two different $f$ trajectories, accom panied by the isolated f$_0(500)$ resonance which dominates the $sqrt{M^{2}}lesssim 1$ GeV region. A slowly varying background is taken into account. The calculated Pomeron-Pomeron total cross section cannot be measured directly, but is an essential part of central diffractive processes. In preparation of future calculations of central resonance production at the hadron level, and corresponding measurements at the LHC, we normalize the Pomeron-Pomeron cross section at large masses $sigma_{t}^{PP} (sqrt{M^2}rightarrow infty) approx$ 1 mb as suggested by QCD-motivated estimates.
77 - A.K. Kohara , C. Marquet 2015
Within the resolved Pomeron model of hard diffractive scattering, we compute prompt photon production in double-Pomeron-exchange events in proton-proton collisions. Using specific kinematical constraints chosen according to the acceptances of the for ward proton detectors of experiments at the Large Hadron Collider, we provide estimates for inclusive and isolated photon production. This is done using the JetPhox program. We find that next-to-leading order corrections to the hard process are important and must be included in order to correctly constrain the quark and gluon content of the Pomeron from such processes at the LHC.
We discuss the production of two pion pairs in photon collisions at high energies as it can take place in ultraperipheral collisions at hadron colliders such as the LHC. We calculate the according matrix elements in kT factorization and discuss the p ossibility to reveal the existence of the perturbative Odderon by charge asymmetries.
We estimate the production of two meson pairs in high energy photon photon collisions produced in ultraperipheral collisions at LHC. We show that the study of charge asymmetries may reveal the existence of the perturbative Odderon and discuss the con crete event rates expected at the LHC. Sizable rates and asymmetries are expected in the case of proton-proton collisions and medium values of gamma-gamma energies sqrt{s_{gamma gamma}} approx 20GeV. Proton-proton collisions will benefit from a high rate due to a large effective gamma-gamma luminosity and ion-ion collisions with a somewhat lower rate from the possibility to trigger on ultraperipheral collisions and a reduced background from strong interactions.
The possibility to measure jet-gap-jet final states in double-Pomeron-exchange events at the LHC is presented. In the context of the ATLAS experiment with additional forward physics detectors, cross sections for different experimental settings and ga p definitions are estimated. This is done in the framework of the Forward Physics Monte Carlo interfaced with a perturbative QCD model that successfully reproduces standard jet-gap-jet cross sections at the Tevatron. The extrapolation to LHC energies follows from the Balitsky-Fadin-Kuraev-Lipatov dynamics, implemented in the model at next-to-leading logarithmic accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا