ﻻ يوجد ملخص باللغة العربية
Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent field method, we first construct their equilibrium sequences specified by two parameters: alpha corresponding to the thermal energy relative to gravitational potential energy, and R_B measuring the ellipticity or ring thickness. Unlike in the incompressible case, not all values of R_B yield an isothermal equilibrium, and the range of R_B for such equilibria shrinks with decreasing alpha. The density distributions in the meridional plane are steeper for smaller alpha, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency Omega_0 and central density rho_max. Rings with smaller alpha are found more unstable with a larger unstable range of the azimuthal mode number. The instability is completely suppressed by rotation when Omega_0 exceeds the critical value. The critical angular frequency is found to be almost constant at ~ 0.7 sqrt(G*rho_c) for alpha > 0.01 and increases rapidly for smaller alpha. We apply our results to a sample of observed star-forming rings and confirm that rings without a noticeable azimuthal age gradient of young star clusters are indeed gravitationally unstable.
The physical properties of the so-called Ostriker isothermal filament (Ostriker 1964) have been classically used as benchmark to interpret the stability of the filaments observed in nearby clouds. However, recent continuum studies have shown that the
We investigate gravitational instability (GI) of rotating, vertically-stratified, pressure-confined, polytropic gas disks using linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium
The physical properties of the so-called Ostriker isothermal, non-rotating filament have been classically used as benchmark to interpret the stability of the filaments observed in nearby clouds. However, such static picture seems to contrast with the
We investigate the spatially-resolved morphology of galaxies in the early Universe. We consider a typical redshift z = 6 Lyman Break galaxy, Althaea from the SERRA hydrodynamical simulations. We create mock rest-frame ultraviolet, optical, and far-in
Secular gravitational instability (GI) is one of the promising mechanisms for creating annular substructures and planetesimals in protoplanetary disks. We perform numerical simulations of the secular GI in a radially extended disk with inward driftin