ترغب بنشر مسار تعليمي؟ اضغط هنا

Forward di-jet production in p+Pb collisions in the small-x improved TMD factorization framework

108   0   0.0 ( 0 )
 نشر من قبل Piotr Kotko
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the production of forward di-jets in proton-lead and proton-proton collisions at the Large Hadron Collider. Such configurations, with both jets produced in the forward direction, impose a dilute-dense asymmetry which allows to probe the gluon density of the lead or proton target at small longitudinal momentum fractions. Even though the jet momenta are always much bigger than the saturation scale of the target, $Q_s$, the transverse momentum imbalance of the di-jet system may be either also much larger than $Q_s$, or of the order $Q_s$, implying that the small-$x$ QCD dynamics involved is either linear or non-linear, respectively. The small-$x$ improved TMD factorization framework deals with both situation in the same formalism. In the latter case, which corresponds to nearly back-to-back jets, we find that saturation effects induce a significant suppression of the forward di-jet azimuthal correlations in proton-lead versus proton-proton collisions.



قيم البحث

اقرأ أيضاً

We calculate various azimuthal angle distributions for three jets produced in the forward rapidity region with transverse momenta $p_T>20,mathrm{GeV}$ in proton-proton (p-p) and proton-lead (p-Pb) collisions at center of mass energy $5.02,,mathrm{TeV }$. We use the multi-parton extension of the so-called small-$x$ Improved Transverse Momentum Dependent factorization (ITMD). We study effects related to change from the standard $k_T$-factorization to ITMD factorization as well as changes as one goes from p-p collision to p-Pb. We observe rather large differences in the distribution when we change the factorization approach, which allows to both improve the small-$x$ TMD gluon distributions as well as validate and improve the factorization approach. We also see significant depletion of the nuclear modification ratio, indicating a possibility of searches for saturation effects using trijet final states in a more exclusive way than for dijets.
60 - Krzysztof Kutak 2019
I report on the recent result of comparison of forward-forward dijet correlations in azimuthal angle as measured by the ATLAS collaboration in the proton-proton and proton-lead collisions to calculations within ITMD factorization framework [1]. The c omparison shows that the broadening effect due to interplay of both the gluon saturation and the Sudakov resummation is necessary to describe the data.
It is now well established that jet modification is a multistage effect; hence a single model alone cannot describe all facets of jet modification. The JETSCAPE framework is a multistage framework that uses several modules to simulate different stage s of jet propagation through the QGP medium. These simulations require a set of parameters to ensure a smooth transition between stages. We fine tune these parameters to successfully describe a variety of observables, such as the nuclear modification factors of leading hadrons and jets, jet shape, and jet fragmentation function. Photons can be produced in the hard scattering or as radiation from quarks inside jets. In this work, we study photon-jet transverse momentum imbalance and azimuthal correlation for both $p-p$ and $Pb-Pb$ collision systems. All the photons produced in each event, including the photons from hard scattering, radiation from the parton shower, and radiation from hadronization are considered with an isolation cut to directly compare with experimental data. The simulations are conducted using the same set of tuned parameters as used for the jet analysis. No new parameters are introduced or tuned. We demonstrate a significantly improved agreement with photons from $Pb-Pb$ collisions compared to prior efforts. This work provides an independent, parameter free verification of the multistage evolution framework.
The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k _T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.
288 - V. Topor Pop 2013
Effects of strong longitudinal colour electric fields (SCF), shadowing, and quenching on the open prompt charm mesons (D$^0$, D$^+$, D$^{*+}$, D${_s}{^+}$) production in central Pb + Pb collisions at $sqrt{s_{rm NN}}$ = 2.76 TeV are investigated with in the framework of the {small HIJING/B=B v2.0} model. We compute the nuclear modification factor $R_{rm PbPb}^{rm D}$, and show that the above nuclear effects constitute important dynamical mechanisms in the description of experimental data. The strength of colour fields (as characterized by the string tension $kappa$), partonic energy loss and jet quenching process lead to a suppression factor consistent with recent published data. Predictions for future beauty mesons measurements have been included. Ratios of strange to non-strange prompt charm mesons in central Pb + Pb and minimum bias (MB) $ p + p$ collisions at 2.76 TeV are also discussed. Minimum bias $p + p$ collisions which constitute theoretical baseline in our calculations are studied at the centre of mass energies $sqrt{s}$ = 2.76 TeV and 7 TeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا