ﻻ يوجد ملخص باللغة العربية
We compare common star-formation rate (SFR) indicators in the local Universe in the GAMA equatorial fields (around 160 sq. deg.), using ultraviolet (UV) photometry from GALEX, far-infrared (FIR) and sub-millimetre (sub-mm) photometry from H-ATLAS, and Halpha spectroscopy from the GAMA survey. With a high-quality sample of 745 galaxies (median redshift 0.08), we consider three SFR tracers: UV luminosity corrected for dust attenuation using the UV spectral slope beta (SFRUV,corr), Halpha line luminosity corrected for dust using the Balmer decrement (BD) (SFRHalpha,corr), and the combination of UV and IR emission (SFRUV+IR). We demonstrate that SFRUV,corr can be reconciled with the other two tracers after applying attenuation corrections by calibrating IRX (i.e. the IR to UV luminosity ratio) and attenuation in the Halpha (derived from BD) against beta. However, beta on its own is very unlikely to be a reliable attenuation indicator. We find that attenuation correction factors depend on parameters such as stellar mass, z and dust temperature (Tdust), but not on Halpha equivalent width (EW) or Sersic index. Due to the large scatter in the IRX vs beta correlation, when compared to SFRUV+IR, the beta-corrected SFRUV,corr exhibits systematic deviations as a function of IRX, BD and Tdust.
The star formation rate (SFR) is a fundamental property of galaxies and it is crucial to understand the build-up of their stellar content, their chemical evolution, and energetic feedback. The SFR of galaxies is typically obtained by observing the em
What else can be said about star formation rate indicators that has not been said already many times over? The `coming of age of large ground-based surveys and the unprecedented sensitivity, angular resolution and/or field-of-view of infrared and ult
We present a meta-analysis of star-formation rate (SFR) indicators in the GAMA survey, producing 12 different SFR metrics and determining the SFR-M* relation for each. We compare and contrast published methods to extract the SFR from each indicator,
Radio emission is a key indicator of star-formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies the effects of therm
We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly (GAMA) groups at $0.05leq z leq 0.2$ and analyze the projected phase space (PPS) diagram, i.e. the galaxy velocity as a fu