ﻻ يوجد ملخص باللغة العربية
High pressure X-ray diffraction measurements have been carried out on the intermetallic semiconductor FeGa$_3$ and the equation of state for FeGa$_3$ has been determined. First principles based DFT calculations within the GGA approximation indicate that although the unit cell volume matches well with the experimentally obtained value at ambient pressure, it is significantly underestimated at high pressures and the difference between them increases as pressure increases. GGA + U calculations with increasing values of U$_{Fe(3d)}$ (on-site Coulomb repulsion between the Fe 3d electrons) at high pressures, correct this discrepancy. Further, the GGA+U calculations also show that along with U$_{Fe(3d)}$, the Fe 3d band width also increases with pressure and around a pressure of 4 GPa, a small density of states appear at the Fermi level. High pressure resistance measurements carried out on FeGa$_3$ also clearly show a signature of an electronic transition. Beyond the pressure of 19.7 GPa, the diffraction peaks reduce in intensity and are not observable beyond $sim$ 26 GPa, leading to an amorphous state.
Thermoelectric properties of the chemically-doped intermetallic narrow-band semiconductor FeGa3 are reported. The parent compound shows semiconductor-like behavior with a small band gap (Eg = 0.2 eV), a carrier density of ~ 10(18) cm-3 and, a large n
The electronic and optical properties of self-assembled InN/GaN quantum dots (QDs) are investigated by means of a tight-binding model combined with configuration interaction calculations. Tight-binding single particle wave functions are used as a bas
We studied the crystal and magnetic structure of Ca2RuO4 by different diffraction techniques under high pressure. The observed first order phase transition at moderate pressure (0.5 GPa) between the insulating phase and the metallic high pressure pha
We investigate the electronic and magnetic properties of the kagome mineral averievite (CsCl)Cu$_5$V$_2$O$_{10}$ and its phosphate analog (CsCl)Cu$_5$P$_2$O$_{10}$ using first-principles calculations. The crystal structure of these compounds features
We report experimental evidence for pressure instabilities in the model multiferroic BiFeO3 and namely reveal two structural phase transitions around 3 GPa and 10 GPa by using diffraction and far-infrared spectroscopy at a synchrotron source. The int