ترغب بنشر مسار تعليمي؟ اضغط هنا

Geomagnetically trapped, albedo and solar energetic particles: trajectory analysis and flux reconstruction with PAMELA

227   0   0.0 ( 0 )
 نشر من قبل Alessandro Bruno
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The PAMELA satellite experiment is providing comprehensive observations of the interplanetary and magnetospheric radiation in the near-Earth environment. Thanks to its identification capabilities and the semi-polar orbit, PAMELA is able to precisely measure the energetic spectra and the angular distributions of the different cosmic-ray populations over a wide latitude region, including geomagnetically trapped and albedo particles. Its observations comprise the solar energetic particle events between solar cycles 23 and 24, and the geomagnetic cutoff variations during magnetospheric storms. PAMELAs measurements are supported by an accurate analysis of particle trajectories in the Earths magnetosphere based on a realistic geomagnetic field modeling, which allows the classification of particle populations of different origin and the investigation of the asymptotic directions of arrival.

قيم البحث

اقرأ أيضاً

The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Groun d Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earths magnetosphere. As case study, the results for the May 17, 2012 event are presented.
Data from the PAMELA satellite experiment were used to perform a detailed measurement of under-cutoff protons at low Earth orbits. On the basis of a trajectory tracing approach using a realistic description of the magnetosphere, protons were classifi ed into geomagnetically trapped and re-entrant albedo. The former include stably-trapped protons in the South Atlantic Anomaly, which were analyzed in the framework of the adiabatic theory, investigating energy spectra, spatial and angular distributions; results were compared with the predictions of the AP8 and the PSB97 empirical trapped models. The albedo protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and un-trapped, spreading over all latitudes and including both short-lived (precipitating) and long-lived (pseudo-trapped) components. Features of the penumbra region around the geomagnetic cutoff were investigated as well. PAMELA observations significantly improve the characterization of the high energy proton populations in near Earth orbits.
The PAMELA satellite-borne experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from $sim$80 MeV to several GeV in near-Earth space. Its unique observational capabilities include the possibility of measu ring the flux angular distribution and thus investigating possible anisotropies related to SEP events. This paper focuses on the analysis methods developed to estimate SEP energy spectra as a function of the particle pitch angle with respect to the Interplanetary Magnetic Field (IMF). The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earths magnetosphere. As case study, the results of the calculation for the May 17, 2012 event are reported.
Little is known about the origin of the high-energy and sustained emission from solar Long-Duration Gamma-Ray Flares (LDGRFs), identified with the Compton Gamma Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/Larg e Area Space Telescope (LAT) has identified dozens of flares with LDGRF signature, the nature of this phenomenon has been a challenge to explain both due to the extreme energies and long durations. The highest-energy emission has generally been attributed to pion production from the interaction of >300 MeV protons with the ambient matter. The extended duration suggests that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from coronal mass ejection driven shocks. It is possible to test these models by making direct comparison between the properties of the accelerated ion population producing the gamma-ray emission derived from the Fermi/LAT observations, and the characteristics of solar energetic particles (SEPs) measured by the Payload for Matter-Antimatter Exploration and Light Nuclei Astrophysics (PAMELA) spacecraft in the energy range corresponding to the pion-related emission detected with Fermi. For fourteen of these events we compare the two populations -- SEPs in space and the interacting particles at the Sun -- and discuss the implications in terms of potential sources. Our analysis shows that the two proton numbers are poorly correlated, with their ratio spanning more than five orders of magnitude, suggesting that the back precipitation of shock-acceleration particles is unlikely the source of the LDGRF emission.
120 - J. F. Wang , G. Qin 2017
It is very important to understand stochastic diffusion of energetic charged particles in non-uniform background magnetic field in plasmas of astrophysics and fusion devices. Using different methods considering along-field adiabatic focusing effect, various authors derived parallel diffusion coefficient $kappa_parallel$ and its correction $T$ to $kappa_{parallel 0}$, where $kappa_{parallel 0}$ is the parallel diffusion coefficient without adiabatic focusing effect. In this paper, using the improved perturbation method developed by He & Schlickeiser and iteration process, we obtain a new correction $T$ to $kappa_{parallel 0}$. Furthermore, by employing the isotropic pitch-angle scattering model $D_{mumu}=D(1-mu^2)$, we find that $T$ has the different sign as that of $T$. In this paper the spatial perpendicular diffusion coefficient $kappa_bot$ with the adiabatic focusing effect is also obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا