ﻻ يوجد ملخص باللغة العربية
We introduce a new class of processes for the evaluation of multivariate equity derivatives. The proposed setting is well suited for the application of the standard copula function theory to processes, rather than variables, and easily enables to enforce the martingale pricing requirement. The martingale condition is imposed in a general multidimensional Markov setting to which we only add the restriction of no-Granger-causality of the increments (Granger-independent increments). We call this class of processes GIMP (Granger Independent Martingale Processes). The approach can also be extended to the application of time change, under which the martingale restriction continues to hold. Moreover, we show that the class of GIMP processes is closed under time changing: if a Granger independent process is used as a multivariate stochastic clock for the change of time of a GIMP process, the new process is also GIMP.
When the underlying stock price is a strict local martingale process under an equivalent local martingale measure, Black-Scholes PDE associated with an European option may have multiple solutions. In this paper, we study an approximation for the smal
A financial market model where agents trade using realistic combinations of buy-and-hold strategies is considered. Minimal assumptions are made on the discounted asset-price process - in particular, the semimartingale property is not assumed. Via a n
Exponential functionals of Brownian motion have been extensively studied in financial and insurance mathematics due to their broad applications, for example, in the pricing of Asian options. The Black-Scholes model is appealing because of mathematica
This paper offers a systematic investigation on the existence of equivalent local martingale deflators, which are multiplicative special semimartingales, in financial markets given by positive semimartingales. In particular, it shows that the existen
We give an exposition and numerical studies of upper hedging prices in multinomial models from the viewpoint of linear programming and the game-theoretic probability of Shafer and Vovk. We also show that, as the number of rounds goes to infinity, the