ﻻ يوجد ملخص باللغة العربية
The cosmic horseshoe gravitational lens is analyzed using the perturbative approach. The two first order perturbative fields are expanded in Fourier series. The source is reconstructed using a fine adaptive grid. The expansion of the fields at order 2 produces a higher value of the chi-square. Expanding at order 3 provides a very significant improvement, while order 4 does not bring a significant improvement over order 3. The presence of the order 3 terms is not a consequence of limiting the perturbative expansion to the first order. The amplitude and signs of the third order terms are recovered by including the contribution of the other group members. This analysis demonstrates that the fine details of the potential of the lens could be recovered independently of any assumptions by using the perturbative approach.
We model the extremely massive and luminous lens galaxy in the Cosmic Horseshoe Einstein ring system, recently discovered in the Sloan Digital Sky Survey. We use the semi-linear method of Warren & Dye (2003), which pixelises the source surface bright
We consider three extensions of the Navarro, Frenk and White (NFW) profile and investigate the intrinsic degeneracies among the density profile parameters on the gravitational lensing effect of satellite galaxies on highly magnified Einstein rings. I
Strong gravitational lensing provides a powerful test of Cold Dark Matter (CDM) as it enables the detection and mass measurement of low mass haloes even if they do not contain baryons. Compact lensed sources such as Active Galactic Nuclei (AGN) are p
The properties of large underdensities in the distribution of galaxies in the Universe, known as cosmic voids, are potentially sensitive probes of fundamental physics. We use data from the MultiDark suite of N-body simulations and multiple halo occup
We report the discovery of 29 promising (and 59 total) new lens candidates from the CFHT Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first Space Warps lens search. The goal of the bl