ﻻ يوجد ملخص باللغة العربية
Let $G$ be a connected complex semisimple Lie group, equipped with a standard multiplicative Poisson structure $pi_{{rm st}}$ determined by a pair of opposite Borel subgroups $(B, B_-)$. We prove that for each $v$ in the Weyl group $W$ of $G$, the double Bruhat cell $G^{v,v} = BvB cap B_-vB_-$ in $G$, together with the Poisson structure $pi_{{rm st}}$, is naturally a Poisson groupoid over the Bruhat cell $BvB/B$ in the flag variety $G/B$. Correspondingly, every symplectic leaf of $pi_{{rm st}}$ in $G^{v,v}$ is a symplectic groupoid over $BvB/B$. For $u, v in W$, we show that the double Bruhat cell $(G^{u,v}, pi_{{rm st}})$ has a naturally defined left Poisson action by the Poisson groupoid $(G^{u, u},pi_{{rm st}})$ and a right Poisson action by the Poisson groupoid $(G^{v,v}, pi_{{rm st}})$, and the two actions commute. Restricting to symplectic leaves of $pi_{{rm st}}$, one obtains commuting left and right Poisson actions on symplectic leaves in $G^{u,v}$ by symplectic leaves in $G^{u, u}$ and in $G^{v,v}$ as symplectic groupoids.
We describe the deformation cohomology of a symplectic groupoid, and use it to study deformations via Moser path methods, proving a symplectic groupoid version of the Moser Theorem. Our construction uses the deformation cohomologies of Lie groupoids
We study deformations of Lie groupoids by means of the cohomology which controls them. This cohomology turns out to provide an intrinsic model for the cohomology of a Lie groupoid with values in its adjoint representation. We prove several fundamenta
This is the second part of a series of two papers dedicated to a systematic study of holomorphic Jacobi structures. In the first part, we introduced and study the concept of a holomorphic Jacobi manifold in a very natural way as well as various tools
VB-groupoids and algebroids are vector bundle objects in the categories of Lie groupoids and Lie algebroids respectively, and they are related via the Lie functor. VB-groupoids and algebroids play a prominent role in Poisson and related geometries. A
The space of vector-valued forms on any manifold is a graded Lie algebra with respect to the Frolicher-Nijenhuis bracket. In this paper we consider multiplicative vector-valued forms on Lie groupoids and show that they naturally form a graded Lie sub