ﻻ يوجد ملخص باللغة العربية
Galaxy clusters are dominated by dark matter, and may have a larger proportion of surviving substructure than, e.g, field galaxies. Due to the presence of galaxy clusters in relative proximity and their high dark matter content, they are promising targets for the indirect detection of dark matter via Gamma-rays. Indeed, dedicated studies of sets of up to 100 clusters have been made previously, so far with no clear indication of a dark matter signal. Here we report on Gamma-ray observations of some 26,000 galaxy clusters based on Pass-7 Fermi Large Area Telescope (LAT) data, with clusters selected from the Tully 2MASS Groups catalog. None of these clusters is significantly detected in Gamma-rays, and we present Gamma-ray flux upper limits between 20 GeV and 500 GeV. We estimate the dark matter content of each of the clusters in these catalogs, and constrain the dark matter annihilation cross section, by analyzing Fermi-LAT data from the directions of the clusters. We set some of the tightest cluster-based constraints to date on the annihilation of dark matter particles with masses between 20 GeV and 500 GeV for annihilation to a gamma-ray line. Our cluster based constraints are not yet as strong as bounds placed using the Galactic Center, although an uncertainty still exists regarding the boost factor from cluster substructure, where we have chosen a rather conservative value. Our analysis, given this choice of possible boost, is not yet sensitive enough to fully rule out typical realistic DM candidates, especially if the gamma-ray line is not a dominant annihilation mode.
We analyze 2.8-yr data of 1-100 GeV photons for clusters of galaxies, collected with the Large Area Telescope onboard the Fermi satellite. By analyzing 49 nearby massive clusters located at high Galactic latitudes, we find no excess gamma-ray emissio
The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in t
We used radio observations of the neighbour galaxy M31 in order to put constraints on dark matter particle mass and annihilation cross section. Dark matter annihilation in M31 halo produces highly energetic leptons, which emit synchrotron radiation o
We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope in the Milky Way Halo region searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints
Annihilation of dark matter particles in cosmological halos (including a halo of the Milky Way) contributes to the diffuse gamma-ray background (DGRB). As this contribution will appear anisotropic in the sky, one can use the angular power spectrum of