ﻻ يوجد ملخص باللغة العربية
Andromeda II (And II) has been known for a few decades but only recently observations have unveiled new properties of this dwarf spheroidal galaxy. The presence of two stellar populations, the bimodal star formation history (SFH) and an unusual rotation velocity of And II put strong constrains on its formation and evolution. Following Lokas et al. (2014), we propose a detailed model to explain the main properties of And II involving (1) a gas-rich major merger between two dwarf galaxies at high redshift in the field and (2) a close interaction with M31 about 5 Gyr ago. The model is based on N-body/hydrodynamical simulations including gas dynamics, star formation and feedback. One simulation is designed to reproduce the gas-rich major merger explaining the origin of stellar populations and the SFH. Other simulations are used to study the effects of tidal forces and the ram pressure stripping during the interaction between And II and M31. The model successfully reproduces the SFH of And II including the properties of stellar populations, its morphology, kinematics and the lack of gas. Further improvements to the model are possible via joint modelling of all processes and better treatment of baryonic physics.
It is widely accepted that within the framework of LCDM a significant fraction of giant-disk galaxies has recently experienced a violent galactic merger. We present numerical simulations of such major mergers of gas-rich pure disk galaxies, and focus
We present the first comparison between the lifetime star formation histories (SFHs) of M31 and Milky Way (MW) satellites. Using the Advanced Camera for Surveys aboard the Hubble Space Telescope, we obtained deep optical imaging of Andromeda II (M$_{
The numerous streams in the M31 halo are currently assumed to be due to multiple minor mergers. Here we use the GADGET2 simulation code to test whether M31 could have experienced a major merger in its past history. It results that a 3+/-0.5:1 gaseous
Using N-body simulations we study the origin of prolate rotation recently detected in the kinematic data for And II, a dSph satellite of M31. We propose an evolutionary model for the origin of And II involving a merger between two disky dwarf galaxie
We present the result of radio and optical observations of the S0 galaxy IC 4200. We find that the galaxy hosts 8.5 billion solar masses of HI rotating on a ~90 deg warped disk extended out to 60 kpc from the centre of the galaxy. Optical spectroscop