ﻻ يوجد ملخص باللغة العربية
In vaccine development, the temporal profiles of relative abundance of subtypes of immune cells (T-cells) is key to understanding vaccine efficacy. Complex and expensive experimental studies generate very sparse time series data on this immune response. Fitting multi-parameter dynamic models of the immune response dynamics-- central to evaluating mechanisms underlying vaccine efficacy-- is challenged by data sparsity. The research reported here addresses this challenge. For HIV/SIV vaccine studies in macaques, we: (a) introduce novel dynamic models of progression of cellular populations over time with relevant, time-delayed components reflecting the vaccine response; (b) define an effective Bayesian model fitting strategy that couples Markov chain Monte Carlo (MCMC) with Approximate Bayesian Computation (ABC)-- building on the complementary strengths of the two approaches, neither of which is effective alone; (c) explore questions of information content in the sparse time series for each of the model parameters, linking into experimental design and model simplification for future experiments; and (d) develop, apply and compare the analysis with samples from a recent HIV/SIV experiment, with novel insights and conclusions about the progressive response to the vaccine, and how this varies across subjects.
Many modern data sets require inference methods that can estimate the shared and individual-specific components of variability in collections of matrices that change over time. Promising methods have been developed to analyze these types of data in s
While there is an increasing amount of literature about Bayesian time series analysis, only a few Bayesian nonparametric approaches to multivariate time series exist. Most methods rely on Whittles Likelihood, involving the second order structure of a
The Whittle likelihood is widely used for Bayesian nonparametric estimation of the spectral density of stationary time series. However, the loss of efficiency for non-Gaussian time series can be substantial. On the other hand, parametric methods are
Our goal is to estimate causal interactions in multivariate time series. Using vector autoregressive (VAR) models, these can be defined based on non-vanishing coefficients belonging to respective time-lagged instances. As in most cases a parsimonious
Adaptive collection of data is commonplace in applications throughout science and engineering. From the point of view of statistical inference however, adaptive data collection induces memory and correlation in the samples, and poses significant chal