ﻻ يوجد ملخص باللغة العربية
The exponent of anomalous diffusion of virus in cytoplasm of a living cell is experimentally known to fluctuate depending on localized areas of the cytoplasm, indicating heterogeneity of diffusion. In a recent paper (Itto, 2012), a maximum-entropy-principle approach has been developed in order to propose an Ansatz for the statistical distribution of such exponent fluctuations. Based on this approach, here the deviation of the statistical distribution of the fluctuations from the proposed one is studied from the viewpoint of Einsteins theory of fluctuations (of the thermodynamic quantities). This may present a step toward understanding the statistical property of the deviation. It is shown in a certain class of small deviations that the deviation obeys the multivariate Gaussian distribution.
Diffusion of tracer particles in the cytoplasm of mammalian cells is often anomalous with a marked heterogeneity even within individual particle trajectories. Despite considerable efforts, the mechanisms behind these observations have remained largel
In their work [Proc. Natl. Acad. Sci. USA 112 (2015) E5725], Bosse et al. experimentally showed that virus capsid exhibits not only normal diffusion but also anomalous diffusion in nucleus of a living cell. There, it was found that the distribution o
The infection pathway of virus in cytoplasm of a living cell is studied from the viewpoint of diffusion theory. The cytoplasm plays a role of a medium for stochastic motion of the virus contained in the endosome as well as the free virus. It is exper
The statistical properties of protein folding within the {phi}^4 model are investigated. The calculation is performed using statistical mechanics and path integral method. In particular, the evolution of heat capacity in term of temperature is given
We use coarse grained molecular dynamics simulations to investigate diffusion properties of sheared lipid membranes with embedded transmembrane proteins. In membranes without proteins, we find normal in-plane diffusion of lipids in all flow condition