ترغب بنشر مسار تعليمي؟ اضغط هنا

Divergent discourse between protests and counter-protests: #BlackLivesMatter and #AllLivesMatter

100   0   0.0 ( 0 )
 نشر من قبل Ryan Gallagher
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the shooting of Black teenager Michael Brown by White police officer Darren Wilson in Ferguson, Missouri, the protest hashtag #BlackLivesMatter has amplified critiques of extrajudicial killings of Black Americans. In response to #BlackLivesMatter, other Twitter users have adopted #AllLivesMatter, a counter-protest hashtag whose content argues that equal attention should be given to all lives regardless of race. Through a multi-level analysis of over 860,000 tweets, we study how these protests and counter-protests diverge by quantifying aspects of their discourse. We find that #AllLivesMatter facilitates opposition between #BlackLivesMatter and hashtags such as #PoliceLivesMatter and #BlueLivesMatter in such a way that historically echoes the tension between Black protesters and law enforcement. In addition, we show that a significant portion of #AllLivesMatter use stems from hijacking by #BlackLivesMatter advocates. Beyond simply injecting #AllLivesMatter with #BlackLivesMatter content, these hijackers use the hashtag to directly confront the counter-protest notion of All lives matter. Our findings suggest that Black Lives Matter movement was able to grow, exhibit diverse conversations, and avoid derailment on social media by making discussion of counter-protest opinions a central topic of #AllLivesMatter, rather than the movement itself.



قيم البحث

اقرأ أيضاً

A common task in computational text analyses is to quantify how two corpora differ according to a measurement like word frequency, sentiment, or information content. However, collapsing the texts rich stories into a single number is often conceptuall y perilous, and it is difficult to confidently interpret interesting or unexpected textual patterns without looming concerns about data artifacts or measurement validity. To better capture fine-grained differences between texts, we introduce generalized word shift graphs, visualizations which yield a meaningful and interpretable summary of how individual words contribute to the variation between two texts for any measure that can be formulated as a weighted average. We show that this framework naturally encompasses many of the most commonly used approaches for comparing texts, including relative frequencies, dictionary scores, and entropy-based measures like the Kullback-Leibler and Jensen-Shannon divergences. Through several case studies, we demonstrate how generalized word shift graphs can be flexibly applied across domains for diagnostic investigation, hypothesis generation, and substantive interpretation. By providing a detailed lens into textual shifts between corpora, generalized word shift graphs help computational social scientists, digital humanists, and other text analysis practitioners fashion more robust scientific narratives.
The framing of political issues can influence policy and public opinion. Even though the public plays a key role in creating and spreading frames, little is known about how ordinary people on social media frame political issues. By creating a new dat aset of immigration-related tweets labeled for multiple framing typologies from political communication theory, we develop supervised models to detect frames. We demonstrate how users ideology and region impact framing choices, and how a messages framing influences audience responses. We find that the more commonly-used issue-generic frames obscure important ideological and regional patterns that are only revealed by immigration-specific frames. Furthermore, frames oriented towards human interests, culture, and politics are associated with higher user engagement. This large-scale analysis of a complex social and linguistic phenomenon contributes to both NLP and social science research.
Commonsense knowledge is crucial for artificial intelligence systems to understand natural language. Previous commonsense knowledge acquisition approaches typically rely on human annotations (for example, ATOMIC) or text generation models (for exampl e, COMET.) Human annotation could provide high-quality commonsense knowledge, yet its high cost often results in relatively small scale and low coverage. On the other hand, generation models have the potential to automatically generate more knowledge. Nonetheless, machine learning models often fit the training data well and thus struggle to generate high-quality novel knowledge. To address the limitations of previous approaches, in this paper, we propose an alternative commonsense knowledge acquisition framework DISCOS (from DIScourse to COmmonSense), which automatically populates expensive complex commonsense knowledge to more affordable linguistic knowledge resources. Experiments demonstrate that we can successfully convert discourse knowledge about eventualities from ASER, a large-scale discourse knowledge graph, into if-then commonsense knowledge defined in ATOMIC without any additional annotation effort. Further study suggests that DISCOS significantly outperforms previous supervised approaches in terms of novelty and diversity with comparable quality. In total, we can acquire 3.4M ATOMIC-like inferential commonsense knowledge by populating ATOMIC on the core part of ASER. Codes and data are available at https://github.com/HKUST-KnowComp/DISCOS-commonsense.
The Internet facilitates large-scale collaborative projects and the emergence of Web 2.0 platforms, where producers and consumers of content unify, has drastically changed the information market. On the one hand, the promise of the wisdom of the crow d has inspired successful projects such as Wikipedia, which has become the primary source of crowd-based information in many languages. On the other hand, the decentralized and often un-monitored environment of such projects may make them susceptible to low quality content. In this work, we focus on Urban Dictionary, a crowd-sourced online dictionary. We combine computational methods with qualitative annotation and shed light on the overall features of Urban Dictionary in terms of growth, coverage and types of content. We measure a high presence of opinion-focused entries, as opposed to the meaning-focused entries that we expect from traditional dictionaries. Furthermore, Urban Dictionary covers many informal, unfamiliar words as well as proper nouns. Urban Dictionary also contains offensive content, but highly offensive content tends to receive lower scores through the dictionarys voting system. The low threshold to include new material in Urban Dictionary enables quick recording of new words and new meanings, but the resulting heterogeneous content can pose challenges in using Urban Dictionary as a source to study language innovation.
Prior approaches to realizing mixed-initiative human--computer referential communication have adopted information-state or collaborative problem-solving approaches. In this paper, we argue for a new approach, inspired by coherence-based models of dis course such as SDRT cite{asher-lascarides:2003a}, in which utterances attach to an evolving discourse structure and the associated knowledge graph of speaker commitments serves as an interface to real-world reasoning and conversational strategy. As first steps towards implementing the approach, we describe a simple dialogue system in a referential communication domain that accumulates constraints across discourse, interprets them using a learned probabilistic model, and plans clarification using reinforcement learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا