ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fluence and Distance Distributions of Fast Radio Bursts

100   0   0.0 ( 0 )
 نشر من قبل Harish Vedantham Mr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fast radio bursts (FRB) are millisecond-duration radio pulses with apparent extragalactic origins. All but two of the FRBs have been discovered using the Parkes dish which employs multiple beams formed by an array of feed horns on its focal plane. In this paper, we show that (i) the preponderance of multiple-beam detections, and (ii) the detection rates for varying dish diameters, can be used to infer the index $alpha$ of the cumulative fluence distribution function (the log$N$-log$F$ function: $alpha=1.5$ for a non-evolving population in a Euclidean universe). If all detected FRBs arise from a single progenitor population, multiple-beam FRB detection rates from the Parkes telescope yield the constraint $0.52<alpha<1.0$ with $90$% confidence. Searches at other facilities with different dish sizes refine the constraint to $0.66<alpha<0.96$. Our results favor FRB searches with smaller dishes, because for $alpha<1$, the gain in field-of-view for a smaller dish is more important than the reduction in sensitivity. Further, our results suggest that (i) FRBs are not standard candles, and (ii) the distribution of distances to the detected FRBs is weighted towards larger distances. If FRBs are extragalactic, these results are consistent with a cosmological population, which would make FRBs excellent probes of the baryonic content and geometry of the Universe.

قيم البحث

اقرأ أيضاً

We investigate whether current data on the distribution of observed flux densities of Fast Radio Bursts (FRBs) are consistent with a constant source density in Euclidean space. We use the number of FRBs detected in two surveys with different characte ristics along with the observed signal-to-noise ratios of the detected FRBs in a formalism similar to a V/V_max-test to constrain the distribution of flux densities. We find consistency between the data and a Euclidean distribution. Any extension of this model is therefore not data-driven and needs to be motivated separately. As a byproduct we also obtain new improved limits for the FRB rate at 1.4 GHz, which had not been constrained in this way before.
Fast radio bursts (FRBs) are bright, unresolved, millisecond-duration flashes of radio emission originating from outside of the Milky Way. The source of these mysterious outbursts is unknown, but their high luminosity, high dispersion measure and sho rt duration requires an extreme, high-energy, astrophysical process. The majority of FRBs have been discovered as single events which would require a chance coincidence for contemporaneous multiwavelength observations. However, two have been observed to repeat: FRB 121102 and the recently detected FRB 180814.J0422+73. These repeating FRBs have allowed for targeted observations by a number of different instruments, including VERITAS. We present the VERITAS FRB observing program and the results of these observations.
102 - Siyao Xu , Bing Zhang 2020
The turbulence in the diffuse intergalactic medium (IGM) plays an important role in various astrophysical processes across cosmic time, but it is very challenging to constrain its statistical properties both observationally and numerically. Via the s tatistical analysis of turbulence along different sightlines toward a population of fast radio bursts (FRBs), we demonstrate that FRBs provide a unique tool to probe the intergalactic turbulence. We measure the structure function (SF) of dispersion measures (DMs) of FRBs to study the multi-scale electron density fluctuations induced by the intergalactic turbulence. The SF has a large amplitude and a Kolmogorov power-law scaling with angular separations, showing large and correlated DM fluctuations over a range of length scales. Given that the DMs of FRBs are IGM dominated, our result tentatively suggests that the intergalactic turbulence has a Kolmogorov power spectrum and an outer scale on the order of $100$ Mpc.
305 - Chen-Hui Niu , Di Li , Rui Luo 2021
We report three new FRBs discovered by the Five-hundred-meter Aperture Spherical radio Telescope (FAST), namely FRB 181017.J0036+11, FRB 181118 and FRB 181130, through the Commensal Radio Astronomy FAST Survey (CRAFTS). Together with FRB 181123 that was reported earlier, all four FAST-discovered FRBs share the same characteristics of low fluence ($leq$0.2 Jy ms) and high dispersion measure (DM, $>1000$ dmu), consistent with the anti-correlation between DM and fluence of the entire FRB population. FRB 181118 and FRB 181130 exhibit band-limited features. FRB 181130 is prominently scattered ($tau_ssimeq8$ ms) at 1.25 GHz. FRB 181017.J0036+11 has full-bandwidth emission with a fluence of 0.042 Jy ms, which is one of the faintest FRB sources detected so far. CRAFTS starts to built a new sample of FRBs that fills the region for more distant and fainter FRBs in the fluence-$rm DM_E$ diagram, previously out of reach of other surveys. The implied all sky event rate of FRBs is $1.24^{+1.94}_{-0.90} times 10^5$ sky$^{-1}$ day$^{-1}$ at the $95%$ confidence interval above 0.0146 Jy ms. We also demonstrate here that the probability density function of CRAFTS FRB detections is sensitive to the assumed intrinsic FRB luminosity function and cosmological evolution, which may be further constrained with more discoveries.
141 - Di Xiao , Fayin Wang , 2021
In 2007, a very bright radio pulse was identified in the archival data of the Parkes Telescope in Australia, marking the beginning of a new research branch in astrophysics. In 2013, this kind of millisecond bursts with extremely high brightness tempe rature takes a unified name, fast radio burst (FRB). Over the first few years, FRBs seemed very mysterious because the sample of known events was limited. With the improvement of instruments over the last five years, hundreds of new FRBs have been discovered. The field is now undergoing a revolution and understanding of FRB has rapidly increased as new observational data increasingly accumulates. In this review, we will summarize the basic physics of FRBs and discuss the current research progress in this area. We have tried to cover a wide range of FRB topics, including the observational property, propagation effect, population study, radiation mechanism, source model, and application in cosmology. A framework based on the latest observational facts is now under construction. In the near future, this exciting field is expected to make significant breakthroughs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا