ﻻ يوجد ملخص باللغة العربية
Fast radio bursts (FRB) are millisecond-duration radio pulses with apparent extragalactic origins. All but two of the FRBs have been discovered using the Parkes dish which employs multiple beams formed by an array of feed horns on its focal plane. In this paper, we show that (i) the preponderance of multiple-beam detections, and (ii) the detection rates for varying dish diameters, can be used to infer the index $alpha$ of the cumulative fluence distribution function (the log$N$-log$F$ function: $alpha=1.5$ for a non-evolving population in a Euclidean universe). If all detected FRBs arise from a single progenitor population, multiple-beam FRB detection rates from the Parkes telescope yield the constraint $0.52<alpha<1.0$ with $90$% confidence. Searches at other facilities with different dish sizes refine the constraint to $0.66<alpha<0.96$. Our results favor FRB searches with smaller dishes, because for $alpha<1$, the gain in field-of-view for a smaller dish is more important than the reduction in sensitivity. Further, our results suggest that (i) FRBs are not standard candles, and (ii) the distribution of distances to the detected FRBs is weighted towards larger distances. If FRBs are extragalactic, these results are consistent with a cosmological population, which would make FRBs excellent probes of the baryonic content and geometry of the Universe.
We investigate whether current data on the distribution of observed flux densities of Fast Radio Bursts (FRBs) are consistent with a constant source density in Euclidean space. We use the number of FRBs detected in two surveys with different characte
Fast radio bursts (FRBs) are bright, unresolved, millisecond-duration flashes of radio emission originating from outside of the Milky Way. The source of these mysterious outbursts is unknown, but their high luminosity, high dispersion measure and sho
The turbulence in the diffuse intergalactic medium (IGM) plays an important role in various astrophysical processes across cosmic time, but it is very challenging to constrain its statistical properties both observationally and numerically. Via the s
We report three new FRBs discovered by the Five-hundred-meter Aperture Spherical radio Telescope (FAST), namely FRB 181017.J0036+11, FRB 181118 and FRB 181130, through the Commensal Radio Astronomy FAST Survey (CRAFTS). Together with FRB 181123 that
In 2007, a very bright radio pulse was identified in the archival data of the Parkes Telescope in Australia, marking the beginning of a new research branch in astrophysics. In 2013, this kind of millisecond bursts with extremely high brightness tempe