ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evolution of Advanced Merger (U)LIRGs on the Color-Stellar Mass Diagram

120   0   0.0 ( 0 )
 نشر من قبل Rui Guo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on a sample of 79 local advanced merger (adv-merger) (U)LIRGs, we search for the evidence of quenching process by investigating the distributions of the star formation history indicators (EW(H$alpha$), EW(H$delta$$_A$) and D$_n(4000)$) on the NUV-r color-mass and SFR-$M_{ast}$ diagrams. The distributions of the EW(H$alpha$) and D$_n(4000)$ on the NUV-r color-mass diagram show clear trends that at a given stellar mass, galaxies with redder NUV-r colors have smaller EW(H$alpha$) and larger D$_n(4000)$. The reddest adv-merger (U)LIRGs close to the green valley have D$_n(4000)$$>1.4$ mostly. In addition, in the SFR-$M_{ast}$ diagram, as the SFR decreases, the EW(H$alpha$) decreases and the D$_n(4000)$ increases, implying that the adv-merger (U)LIRGs on the star formation main sequence have more evolved stellar populations than those above the main sequence. These results indicate that a fraction of the adv-merger (U)LIRGs have already exhibited signs of fading from the starburst phase and that the NUV-r reddest adv-merger (U)LIRGs are likely at the initial stage of post-starbursts with age of $sim 1$ Gyr, which is consistent with the gas exhausting time-scales. Therefore, our results offer additional support for the fast evolutionary track from the blue cloud to the red sequence.



قيم البحث

اقرأ أيضاً

We study the significance of mergers in the quenching of star formation in galaxies at z~1 by examining their color-mass distributions for different morphology types. We perform two-dimensional light profile fits to GOODS iz images of ~5000 galaxies and X-ray selected active galactic nucleus (AGN) hosts in the CANDELS/GOODS-north and south fields in the redshift range 0.7<z<1.3. Distinguishing between bulge-dominated and disk-dominated morphologies, we find that disks and spheroids have distinct color-mass distributions, in agreement with studies at z~0. The smooth distribution across colors for the disk galaxies corresponds to a slow exhaustion of gas, with no fast quenching event. Meanwhile, blue spheroids most likely come from major mergers of star-forming disk galaxies, and the dearth of spheroids at intermediate green colors is suggestive of rapid quenching. The distribution of moderate luminosity X-ray AGN hosts is even across colors, in contrast, and we find similar numbers and distributions among the two morphology types with no apparent dependence on Eddington ratio. The high fraction of bulge-dominated galaxies that host an AGN in the blue cloud and green valley is consistent with the scenario in which the AGN is triggered after a major merger, and the host galaxy then quickly evolves into the green valley. This suggests AGN feedback may play a role in the quenching of star formation in the minority of galaxies that undergo major mergers.
123 - Izumi Hachisu 2016
We have examined the outburst tracks of 40 novae in the color-magnitude diagram (intrinsic B-V color versus absolute V magnitude). After reaching the optical maximum, each nova generally evolves toward blue from the upper-right to the lower-left and then turns back toward the right. The 40 tracks are categorized into one of six templates: very fast nova V1500 Cyg; fast novae V1668 Cyg, V1974 Cyg, and LV Vul; moderately fast nova FH Ser; and very slow nova PU Vul. These templates are located from the left (blue) to the right (red) in this order, depending on the envelope mass and nova speed class. A bluer nova has a less massive envelope and faster nova speed class. In novae with multiple peaks, the track of the first decay is more red than that of the second (or third) decay, because a large part of the envelope mass had already been ejected during the first peak. Thus, our newly obtained tracks in the color-magnitude diagram provide useful information to understand the physics of classical novae. We also found that the absolute magnitude at the beginning of the nebular phase is almost similar among various novae. We are able to determine the absolute magnitude (or distance modulus) by fitting the track of a target nova to the same classification of a nova with a known distance. This method for determining nova distance has been applied to some recurrent novae and their distances have been recalculated.
We present an analysis of the predictions made by the Galform semi-analytic galaxy formation model for the evolution of the relationship between stellar mass and halo mass. We show that for the standard implementations of supernova feedback and gas r eincorporation used in semi-analytic models, this relationship is predicted to evolve weakly over the redshift range 0<z<4. Modest evolution in the median stellar mass versus halo mass (SHM) relationship implicitly requires that, at fixed halo mass, the efficiency of stellar mass assembly must be almost constant with cosmic time. We show that in our model, this behaviour can be understood in simple terms as a result of a constant efficiency of gas reincorporation, and an efficiency of SNe feedback that is, on average, constant at fixed halo mass. We present a simple explanation of how feedback from active galactic nuclei (AGN) acts in our model to introduce a break in the SHM relation whose location is predicted to evolve only modestly. Finally, we show that if modifications are introduced into the model such that, for example, the gas reincorporation efficiency is no longer constant, the median SHM relation is predicted to evolve significantly over 0<z<4. Specifically, we consider modifications that allow the model to better reproduce either the evolution of the stellar mass function or the evolution of average star formation rates inferred from observations.
473 - Casey Papovich 2018
We study the effects of galaxy environment on the evolution of the stellar-mass function (SMF) over 0.2 < z < 2.0 using the FourStar Galaxy Evolution (ZFOURGE) survey and NEWFIRM Medium-Band Survey (NMBS) down to the stellar-mass completeness limit, log M / Msun > 9.0 (9.5) at z = 1.0 (2.0). We compare the SMFs for quiescent and star-forming galaxies in the highest and lowest environments using a density estimator based on the distance to the galaxies third-nearest neighbors. For star-forming galaxies, at all redshifts there are only minor differences with environment in the shape of the SMF. For quiescent galaxies, the SMF in the lowest densities shows no evolution with redshift, other than an overall increase in number density (phi*) with time. This suggests that the stellar-mass dependence of quenching in relatively isolated galaxies is both universal and does not evolve strongly. While at z >~ 1.5 the SMF of quiescent galaxies is indistinguishable in the highest and lowest densities, at lower redshifts it shows a rapidly increasing number density of lower-mass galaxies, log M / Msun ~= 9-10. We argue this evolution can account for all the redshift evolution in the shape of the total quiescent-galaxy SMF. This evolution in the quiescent-galaxy SMF at higher redshift (z > 1) requires an environmental-quenching efficiency that decreases with decreasing stellar mass at 0.5 < z < 1.5 or it would overproduce the number of lower-mass quiescent galaxies in denser environments. This requires a dominant environment process such as starvation combined with rapid gas depletion and ejection at z > 0.5 - 1.0 for galaxies in our mass range. The efficiency of this process decreases with redshift allowing other processes (such as galaxy interactions and ram-pressure stripping) to become more important at later times, z < 0.5.
At a fixed halo mass, galaxy clusters with higher magnitude gaps have larger brightest central galaxy (BCG) stellar masses. Recent studies have shown that by including the magnitude gap ($rm m_{gap}$) as a latent parameter in the stellar mass - halo mass (SMHM) relation, we can make more precise measurements on the amplitude, slope, and intrinsic scatter. Using galaxy clusters from the Sloan Digital Sky Survey, we measure the SMHM-$rm m_{gap}$ relation and its evolution out to $z=0.3$. Using a fixed comoving aperture of 100kpc to define the central galaxys stellar mass, we report statistically significant negative evolution in the slope of the SMHM relation to $z = 0.3$ ($> 3.5sigma$). The steepening of the slope over the last 3.5 Gyrs can be explained by late-time merger activity at the cores of galaxy clusters. We also find that the inferred slope depends on the aperture used to define the radial extent of the central galaxy. At small radii (20kpc), the slope of the SMHM relation is shallow, indicating that the core of the central galaxy is less related to the growth of the underlying host halo. By including all of the central galaxys light within 100kpc, the slope reaches an asymptote at a value consistent with recent high resolution hydrodynamical cosmology simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا