ﻻ يوجد ملخص باللغة العربية
The tetragonal YbNi$_4$P$_2$ is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi$_4$P$_2$ single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the $[001]$-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR$_{1.8rm K}= 17$ have been grown.
We have investigated large single crystals of YbNi$_4$P$_2$ that were grown from a levitating melt by the Czochralski method. The new samples facilitate the determination of the absolute values of the electrical resistivity. Phase pure polycrystallin
The crystal and magnetic structure of multiferroic LiFe(WO$_4$)$_2$ were investigated by temperature and magnetic-field dependent specific heat, susceptibility and neutron diffraction experiments on single crystals. Considering only the two nearest-n
An investigation of the structural, thermodynamic, and electronic transport properties of the isoelectronic chemical substitution series Ce(Pd$_{1-x}$Ni$_x$)$_2$P$_2$ is reported, where a possible ferromagnetic quantum critical point is uncovered in
Ternary Ba-Fe-As system has been studied to determine a primary solidification field of the BaFe$_2$As$_2$ phase. We found that the BaFe$_2$As$_2$ phase most likely melts congruently and primarily solidifies either in the FeAs excess or Ba$_{x}$As$_{
The bulk single crystals of $S = 1$ chain compound Ni(C$_3$H$_{10}$N$_2$)$_2$NO$_2$ClO$_4$ are grown by using a slow evaporation method at a constant temperature and a slow cooling method. It is found that the optimum condition of growing large cryst