ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlating CMB Spectral Distortions with Temperature: what do we learn on Inflation?

95   0   0.0 ( 0 )
 نشر من قبل Razieh Emami Meibody
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Probing correlations among short and long-wavelength cosmological fluctuations is known to be decisive for deepening the current understanding of inflation at the microphysical level. Spectral distortions of the CMB can be caused by dissipation of cosmological perturbations when they re-enter Hubble after inflation. Correlating spectral distortions with temperature anisotropies will thus provide the opportunity to greatly enlarge the range of scales over which squeezed limits can be tested, opening up a new window on inflation complementing the ones currently probed with CMB and LSS. In this paper we discuss a variety of inflationary mechanisms that can be efficiently constrained with distortion-temperature correlations. For some of these realizations (representative of large classes of models) we derive quantitative predictions for the squeezed limit bispectra, finding that their amplitudes are above the sensitivity limits of an experiment such as the proposed PIXIE.

قيم البحث

اقرأ أيضاً

121 - Jiri J. Mares 2016
Temperature, the central concept of thermal physics, is one of the most frequently employed physical quantities in common practice. Even though the operative methods of the temperature measurement are described in detail in various practical instruct ions and textbooks, the rigorous treatment of this concept is almost lacking in the current literature. As a result, the answer to a simple question of what the temperature is is by no means trivial and unambiguous. There is especially an appreciable gap between the temperature as introduced in the frame of statistical theory and the only experimentally observable quantity related to this concept, phenomenological temperature. Just the logical and epistemological analysis of the present concept of phenomenological temperature is the kernel of the contribution.
71 - Clive Dickinson 2010
Polarized foregrounds are going to be a serious challenge for detecting CMB cosmological B-modes. Both diffuse Galactic emission and extragalactic sources contribute significantly to the power spectrum on large angular scales. At low frequencies, Gal actic synchrotron emission will dominate with fractional polarization $sim 20-40%$ at high latitudes while radio sources can contribute significantly even on large ($sim 1^{circ}$) angular scales. Nevertheless, simulations suggest that a detection at the level of $r=0.001$ might be achievable if the foregrounds are not too complex.
The small-scale crisis, discrepancies between observations and N-body simulations, may imply suppressed matter fluctuations on subgalactic distance scales. Such a suppression could be caused by some early-universe mechanism (e.g., broken scale invari ance during inflation), leading to a modification of the primordial power spectrum at the onset of the radiation-domination era. Alternatively, it may be due to nontrivial dark-matter properties (e.g., new dark-matter interactions or warm dark matter) that affect the matter power spectrum at late times, during radiation domination, after the perturbations re-enter the horizon. We show that early- and late-time suppression mechanisms can be distinguished by measurement of the $mu$ distortion to the frequency spectrum of the cosmic microwave background. This is because the $mu$ distortion is suppressed, if the power suppression is primordial, relative to the value expected from the dissipation of standard nearly scale-invariant fluctuations. We emphasize that the standard prediction of the $mu$ distortion remains unchanged in late-time scenarios even if the dark-matter effects occur before or during the era (redshifts $5times 10^4 lesssim z lesssim 2times 10^6$) at which $mu$ distortions are generated.
In the present paper, we investigate the cosmographic problem using the bias-variance trade-off. We find that both the z-redshift and the $y=z/(1+z)$-redshift can present a small bias estimation. It means that the cosmography can describe the superno va data more accurately. Minimizing risk, it suggests that cosmography up to the second order is the best approximation. Forecasting the constraint from future measurements, we find that future supernova and redshift drift can significantly improve the constraint, thus having the potential to solve the cosmographic problem. We also exploit the values of cosmography on the deceleration parameter and equation of state of dark energy $w(z)$. We find that supernova cosmography cannot give stable estimations on them. However, much useful information was obtained, such as that the cosmography favors a complicated dark energy with varying $w(z)$, and the derivative $dw/dz<0$ for low redshift. The cosmography is helpful to model the dark energy.
CMB spectral distortions are induced by Compton collisions with electrons. We review the various schemes to characterize the anisotropic CMB with a non-Planckian spectrum. We advocate using logarithmically averaged temperature moments as the preferre d language to describe these spectral distortions, both for theoretical modeling and observations. Numerical modeling is simpler, the moments are frame-independent, and in terms of scattering the mode truncation is exact.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا