ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of interstitial impurities on the field dependent microwave surface resistance of niobium

77   0   0.0 ( 0 )
 نشر من قبل Martina Martinello
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. The origin of this effect is attributed to the lowering of the Mattis and Bardeen surface resistance contribution with increasing accelerating field. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper we conduct the first systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobium resonators. Adding these results together we are able to show for the first time which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. These results also provide new insights on the physics behind the change in the field dependence of the Mattis and Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.

قيم البحث

اقرأ أيضاً

The radio-frequency surface resistance of niobium resonators is incredibly reduced when nitrogen impurities are dissolved as interstitial in the material, conferring ultra-high Q-factors at medium values of accelerating field. This effect has been ob served in both high and low temperature nitrogen treatments. As a matter of fact, the peculiar anti Q-slope observed in nitrogen doped cavities, i.e. the decreasing of the Q-factor with the increasing of the radio-frequency field, come from the decreasing of the BCS surface resistance component as a function of the field. Such peculiar behavior has been considered consequence of the interstitial nitrogen present in the niobium lattice after the doping treatment. The study here presented show the field dependence of the BCS surface resistance of cavities with different resonant frequencies, such as: 650 MHz, 1.3 GHz, 2.6 GHz and 3.9 GHz, and processed with different state-of-the-art surface treatments. These findings show for the first time that the anti Q-slope might be seen at high frequency even for clean Niobium cavities, revealing useful suggestion on the physics underneath the anti Q-slope effect.
73 - G. Ciovati , P. Dhakal , 2014
In a recent comment [arXiv:1405.2978v1 (2014)] Romanenko and Grassellino made unsubstantiated statements about our work [Appl. Phys. Lett. 104, 092601 (2014)] and ascribed to us wrong points which we had not made. Here we show that the claims of Roma nenko and Grassellino are based on misinterpretation of our Letter and inadequate data analysis in their earlier work [*]. [*] A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)
We present measurements of the magnetic field dependent microwave surface resistance in laser-ablated YBa$_2$Cu$_3$O$_{7-delta}$ films on SrTiO$_3$ substrates. BaZrO$_3$ crystallites were included in the films using composite targets containing BaZrO $_3$ inclusions with mean grain size smaller than 1 $mu$m. X-ray diffraction showed single epitaxial relationship between BaZrO$_3$ and YBa$_2$Cu$_3$O$_{7-delta}$. The effective surface resistance was measured at 47.7 GHz for 60$< T <$90 K and 0$< mu_0H <$0.8 T. The magnetic field had a very different effect on pristine YBa$_2$Cu$_3$O$_{7-delta}$ and YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$, while for $mu_0H=$0 only a reduction of $T_c$ in the YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$ film was observed, consistent with dc measurements. At low enough $T$, in moderate fields YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$ exhibited an intrinsic thin film resistance lower than the pure film. The results clearly indicate that BaZrO$_3$ inclusions determine a strong reduction of the field-dependent surface resistance. From the analysis of the data in the framework of simple models for the microwave surface impedance in the mixed state we argue that BaZrO$_3$ inclusions determine very steep pinning potentials.
Expulsion of ambient flux has been shown to be crucial to obtain high quality factors in bulk niobium SRF cavities. However, there remain many questions as to what properties of the niobium material determine its flux expulsion behavior. In this pape r, we present first results from a new study of two cavities that were specially fabricated to study flux expulsion. Both cavities were made from large grain ingot niobium slices, one of which had its slices rolled prior to fabrication, and none these slices were annealed prior to measurement. Expulsion measurements indicate that a dense network of grain boundaries is not necessary for a cavity to have near-complete flux trapping behavior up to large thermal gradients. The results also contribute to a body of evidence that cold work is a strong determinant of flux expulsion behavior in SRF-grade niobium.
We present a general method to derive the magnetic field dependence of the surface resistance of superconductors from the Q-curves obtained during the cryogenic tests of cavities. The results are applied to coaxial half-wave cavities, TM-like ellipti cal accelerating cavities, and cavities of more complicated geometries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا