ترغب بنشر مسار تعليمي؟ اضغط هنا

A geometric analogue of a conjecture of Gross and Reeder

117   0   0.0 ( 0 )
 نشر من قبل Daniel Sage
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Let G be a simple complex algebraic group. We prove that the irregularity of the adjoint connection of an irregular flat G-bundle on the formal punctured disk is always greater than or equal to the rank of G. This can be considered as a geometric analogue of a conjecture of Gross and Reeder. We will also show that the irregular connections with minimum adjoint irregularity are precisely the (formal) Frenkel-Gross connections.



قيم البحث

اقرأ أيضاً

119 - Andrei Okounkov 2018
The subjects in the title are interwoven in many different and very deep ways. I recently wrote several expository accounts [64-66] that reflect a certain range of developments, but even in their totality they cannot be taken as a comprehensive surve y. In the format of a 30-page contribution aimed at a general mathematical audience, I have decided to illustrate some of the basic ideas in one very interesting example - that of HilbpC2, nq, hoping to spark the curiosity of colleagues in those numerous fields of study where one should expect applications.
95 - Zhilin Luo 2020
Through combining the work of Jean-Loup Waldspurger (cite{waldspurger10} and cite{waldspurgertemperedggp}) and Raphael Beuzart-Plessis (cite{beuzart2015local}), we give a proof for the tempered part of the local Gan-Gross-Prasad conjecture (cite{ggpo riginal}) for special orthogonal groups over any local fields of characteristic zero, which was already proved by Waldspurger over $p$-adic fields.
We investigate the irreducibility of the nilpotent Slodowy slices that appear as the associated variety of W-algebras. Furthermore, we provide new examples of vertex algebras whose associated variety has finitely many symplectic leaves.
The polynomial ring $B_r:=mathbb{Q}[e_1,ldots,e_r]$ in $r$ indeterminates is a representation of the Lie algebra of all the endomorphism of $mathbb{Q}[X]$ vanishing at powers $X^j$ for all but finitely many $j$. We determine a $B_r$-valued formal pow er series in $r+2$ indeterminates which encode the images of all the basis elements of $B_r$ under the action of the generating function of elementary endomorphisms of $mathbb{Q}[X]$, which we call the structural series of the representation. The obtained expression implies (and improves) a formula by Gatto & Salehyan, which only computes, for one chosen basis element, the generating function of its images. For sake of completeness we construct in the last section the $B=B_infty$-valued structural formal power series which consists in the evaluation of the vertex operator describing the bosonic representation of $gl_{infty}(mathbb{Q})$ against the generating function of the standard Schur basis of $B$. This provide an alternative description of the bosonic representation of $gl_{infty}$ due to Date, Jimbo, Kashiwara and Miwa which does not involve explicitly exponential of differential operators.
In this paper, we introduce geometric multiplicities, which are positive varieties with potential fibered over the Cartan subgroup $H$ of a reductive group $G$. They form a monoidal category and we construct a monoidal functor from this category to t he representations of the Langlands dual group $G^vee$ of $G$. Using this, we explicitly compute various multiplicities in $G^vee$-modules in many ways. In particular, we recover the formulas for tensor product multiplicities of Berenstein- Zelevinsky and generalize them in several directions. In the case when our geometric multiplicity $X$ is a monoid, i.e., the corresponding $G^vee$ module is an algebra, we expect that in many cases, the spectrum of this algebra is affine $G^vee$-variety $X^vee$, and thus the correspondence $Xmapsto X^vee$ has a flavor of both the Langlands duality and mirror symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا