ﻻ يوجد ملخص باللغة العربية
Let G be a simple complex algebraic group. We prove that the irregularity of the adjoint connection of an irregular flat G-bundle on the formal punctured disk is always greater than or equal to the rank of G. This can be considered as a geometric analogue of a conjecture of Gross and Reeder. We will also show that the irregular connections with minimum adjoint irregularity are precisely the (formal) Frenkel-Gross connections.
The subjects in the title are interwoven in many different and very deep ways. I recently wrote several expository accounts [64-66] that reflect a certain range of developments, but even in their totality they cannot be taken as a comprehensive surve
Through combining the work of Jean-Loup Waldspurger (cite{waldspurger10} and cite{waldspurgertemperedggp}) and Raphael Beuzart-Plessis (cite{beuzart2015local}), we give a proof for the tempered part of the local Gan-Gross-Prasad conjecture (cite{ggpo
We investigate the irreducibility of the nilpotent Slodowy slices that appear as the associated variety of W-algebras. Furthermore, we provide new examples of vertex algebras whose associated variety has finitely many symplectic leaves.
The polynomial ring $B_r:=mathbb{Q}[e_1,ldots,e_r]$ in $r$ indeterminates is a representation of the Lie algebra of all the endomorphism of $mathbb{Q}[X]$ vanishing at powers $X^j$ for all but finitely many $j$. We determine a $B_r$-valued formal pow
In this paper, we introduce geometric multiplicities, which are positive varieties with potential fibered over the Cartan subgroup $H$ of a reductive group $G$. They form a monoidal category and we construct a monoidal functor from this category to t