ﻻ يوجد ملخص باللغة العربية
We use K2 to continue the exploration of the distribution of rotation periods in Pleiades that we began in Paper I. We have discovered complicated multi-period behavior in Pleiades stars using these K2 data, and we have grouped them into categories, which are the focal part of this paper. About 24% of the sample has multiple, real frequencies in the periodogram, sometimes manifesting as obvious beating in the light curves. Those having complex and/or structured periodogram peaks, unresolved multiple periods, and resolved close multiple periods are likely due to spot/spot group evolution and/or latitudinal differential rotation; these largely compose the slowly rotating sequence in $P$ vs.~$(V-K_{rm s})_0$ identified in Paper I. The fast sequence in $P$ vs.~$(V-K_{rm s})_0$ is dominated by single-period stars; these are likely to be rotating as solid bodies. Paper III continues the discussion, speculating about the origin and evolution of the period distribution in the Pleiades.
Young (125 Myr), populous ($>$1000 members), and relatively nearby, the Pleiades has provided an anchor for stellar angular momentum models for both younger and older stars. We used K2 to explore the distribution of rotation periods in the Pleiades.
We use high quality K2 light curves for hundreds of stars in the Pleiades to understand better the angular momentum evolution and magnetic dynamos of young, low mass stars. The K2 light curves provide not only rotational periods but also detailed inf
We present an analysis of K2 light curves (LCs) from Campaigns 4 and 13 for members of the young ($sim$3 Myr) Taurus association, in addition to an older ($sim$30 Myr) population of stars that is largely in the foreground of the Taurus molecular clou
Flares, energetic eruptions on the surfaces of stars, are an unmistakable manifestation of magnetically driven emission. Their occurrence rates and energy distributions trace stellar characteristics such as mass and age. But before flares can be used
The open cluster M67 offers the unique opportunity to measure rotation periods for solar-age stars across a range of masses, potentially filling a critical gap in the understanding of angular momentum loss in older main sequence stars. The observatio