ترغب بنشر مسار تعليمي؟ اضغط هنا

The Prevalence and Impact of Wolf-Rayet Stars in Emerging Massive Star Clusters

76   0   0.0 ( 0 )
 نشر من قبل Kimberly Sokal
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate Wolf-Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4m Mayall Telescope at Kitt Peak National Observatory and the 6.5m MMT. We identify 21 sources with significantly detected WR signatures, which we term emerging WR clusters. WR features are detected in $sim$50% of the radio-selected sample, and thus we find that WR stars are commonly present in massive star clusters currently emerging. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.



قيم البحث

اقرأ أيضاً

Context: The ESO Public Survey VISTA Variables in the Via Lactea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. In this survey nearly 150 new open cl usters and cluster candidates have been discovered. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We affirm that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 10^3 Msol) clusters. They are highly obscured (Av ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 Msol for the WR stars. Finally,we discuss the spiral structure of the Galaxy using as tracers the six new clusters together with the previously studied VVV clusters.
We investigate the influence of Wolf-Rayet (W-R) stars on their surrounding star-forming molecular clouds. We study five regions containing W-R stars in the inner Galactic plane ($lsim$[14$^circ$-52$^circ$]), using multi-wavelength data from near-inf rared to radio wavelengths. Analysis of $^{13}$CO line data reveals that these W-R stars have developed gas-deficient cavities in addition to molecular shells with expansion velocities of a few km s$^{-1}$. The pressure owing to stellar winds primarily drives these expanding shells and sweeps up the surrounding matter to distances of a few pc. The column densities of shells are enhanced by a minimum of 14% for one region to a maximum of 88% for another region with respect to the column densities within their central cavities. No active star formation - including molecular condensations, protostars, or ionized gas - is found inside the cavities, whereas such features are observed around the molecular shells. Although the expansion of ionized gas is considered an effective mechanism to trigger star formation, the dynamical ages of the HII regions in our sample are generally not sufficiently long to do so efficiently. Overall, our results hint at the possible importance of negative W-R wind-driven feedback on the gas-deficient cavities, where star formation is quenched as a consequence. In addition, the presence of active star formation around the molecular shells indicates that W-R stars may also assist in accumulating molecular gas, and that they could initiate star formation around those shells.
New integral field spectroscopy (IFS) has been obtained for the nearby metal-poor WR galaxy Mrk178 to examine the spatial correlation between its WR stars and the neighbouring ionized ISM. The strength of the broad WR features and its low metallicity make Mrk178 an intriguing object. We have detected the blue and red WR bumps in different locations across the FOV (~ 300 pc x 230 pc) in Mrk178. The study of the WR content has been extended, for the first time, beyond its brightest star-forming knot uncovering new WR star-clusters. Using SMC/LMC-template WR stars we empirically estimate a minimum of ~ 20 WR stars within the region sampled. Maps of the spatial distribution of the emission-lines and of the physical-chemical properties of the ionized ISM have been created and analyzed. Here we refine the statistical methodology by Perez-Montero et al.(2011) to probe the presence of variations in the ISM properties. An error-weighted mean of 12+log(O/H)=7.72 +/- 0.01 is taken as the representative oxygen abundance for Mrk178. A localized N and He enrichment, spatially correlated with WR stars, is suggested by this analysis. Nebular HeII4686 emission is shown to be spatially extended reaching well beyond the location of the WR stars. This spatial offset between WRs and HeII emission can be explained based on the mechanical energy input into the ISM by the WR star winds, and does not rule out WR stars as the HeII ionization source. We study systematic aperture effects on the detection and measurement of the WR features, using SDSS spectra combined with the power of IFS. In this regard, the importance of targeting low metallicity nearby systems is discussed.
We present the analysis of archival Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) observations of the interacting galaxies NGC 4038/39 (a.k.a. the Antennae) at a distance of 18.1 Mpc. Up to 38 young star-forming complexes with e vident contribution from Wolf-Rayet (WR) stars are unveiled. We use publicly available templates of Galactic WR stars in conjunction with available photometric extinction measurements to quantify and classify the WR population in each star-forming region, on the basis of its nearly Solar oxygen abundance. The total estimated number of WR stars in the Antennae is 4053 $pm$ 84, of which there are 2021 $pm$ 60 WNL and 2032 $pm$ 59 WC-types. Our analysis suggests a global WC to WN-type ratio of 1.01 $pm$ 0.04, which is consistent with the predictions of the single star evolutionary scenario in the most recent BPASS stellar population synthesis models.
115 - A. Roman-Lopes 2010
I report the discovery of two new Galactic Wolf-Rayet stars in Circinus via detection of their C, N and He Near-Infrared emission lines, using ESO-NTT-SOFI archival data. The H- and K-band spectra of WR67a and WR67b, indicate that they are Wolf-Rayet stars of WN6h and WC8 sub-types, respectively. WR67a presents a weak-lined spectrum probably reminiscent of young hydrogen rich main-sequence stars such as WR25 in Car OB1 and HD97950 in NGC3603. Indeed, this conclusion is reinforced by the close morphological match of the WR67a H- and K-band spectra with that for WR21a, a known extremely massive binary system. WR67b is probably a non-dusty WC8 Wolf-Rayet star that has a estimated heliocentric distance of 2.7(0.9) kpc, which for its Galactic coordinates, puts the star probably in the near portion of the Scutum-Centaurus arm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا