For $1<p<infty$ and $0<s<1$, let $mathcal{Q}^p_ s (mathbb{T})$ be the space of those functions $f$ which belong to $ L^p(mathbb{T})$ and satisfy [ sup_{Isubset mathbb{T}}frac{1}{|I|^s}int_Iint_Ifrac{|f(zeta)-f(eta)|^p}{|zeta-eta|^{2-s}}|dzeta||deta
|<infty, ] where $|I|$ is the length of an arc $I$ of the unit circle $mathbb{T}$ . In this paper, we give a complete description of multipliers between $mathcal{Q}^p_ s (mathbb{T})$ spaces. The spectra of multiplication operators on $mathcal{Q}^p_ s (mathbb{T})$ are also obtained.
In this paper we consider interpolation in model spaces, $H^2 ominus B H^2$ with $B$ a Blaschke product. We study unions of interpolating sequences for two sequences that are far from each other in the pseudohyperbolic metric as well as two sequences
that are close to each other in the pseudohyperbolic metric. The paper concludes with a discussion of the behavior of Frostman sequences under perturbations.
We introduce a family of weighted BMO and VMO spaces for the unit ball and use them to characterize bounded and compact Hankel operators between different Bergman spaces. In particular, we resolve two problems left open by S. Janson in 1988 and R. Wallsten in 1990.
Let $mathcal{G}$ resp. $M$ be a positive dimensional Lie group resp. connected complex manifold without boundary and $V$ a finite dimensional $C^{infty}$ compact connected manifold, possibly with boundary. Fix a smoothness class $mathcal{F}=C^{infty}
$, Holder $C^{k, alpha}$ or Sobolev $W^{k, p}$. The space $mathcal{F}(V, mathcal{G})$ resp. $mathcal{F}(V, M)$ of all $mathcal{F}$ maps $V to mathcal{G}$ resp. $V to M$ is a Banach/Frechet Lie group resp. complex manifold. Let $mathcal{F}^0(V, mathcal{G})$ resp. $mathcal{F}^{0}(V, M)$ be the component of $mathcal{F}(V, mathcal{G})$ resp. $mathcal{F}(V, M)$ containing the identity resp. constants. A map $f$ from a domain $Omega subset mathcal{F}_1(V, M)$ to $mathcal{F}_2(W, M)$ is called range decreasing if $f(x)(W) subset x(V)$, $x in Omega$. We prove that if $dim_{mathbb{R}} mathcal{G} ge 2$, then any range decreasing group homomorphism $f: mathcal{F}_1^0(V, mathcal{G}) to mathcal{F}_2(W, mathcal{G})$ is the pullback by a map $phi: W to V$. We also provide several sufficient conditions for a range decreasing holomorphic map $Omega$ $to$ $mathcal{F}_2(W, M)$ to be a pullback operator. Then we apply these results to study certain decomposition of holomorphic maps $mathcal{F}_1(V, N) supset Omega to mathcal{F}_2(W, M)$. In particular, we identify some classes of holomorphic maps $mathcal{F}_1^{0}(V, mathbb{P}^n) to mathcal{F}_2(W, mathbb{P}^m)$, including all automorphisms of $mathcal{F}^{0}(V, mathbb{P}^n)$.