ﻻ يوجد ملخص باللغة العربية
We consider the Wigner quasi-probability distribution function of a single mode of an electromagnetic or matter-wave field to address the question of whether a direct stochastic sampling and binning of the absolute square of the complex field amplitude can yield a distribution function $tilde{P}_n$ that closely approximates the true particle number probability distribution $P_n$ of the underlying quantum state. By providing an operational definition of the binned distribution $tilde{P}_n$ in terms of the Wigner function, we explicitly calculate the overlap between $tilde{P}_n$ and ${P}_n$ and hence quantify the statistical distance between the two distributions. We find that there is indeed a close quantitative correspondence between $tilde{P}_n$ and $P_n$ for a wide range of quantum states that have smooth and broad Wigner function relative to the scale of oscillations of the Wigner function for the relevant Fock state. However, we also find counterexamples, including states with high mode occupation, for which $tilde{P}_n$ does not closely approximate $P_n$.
We report a direct measurement of the Wigner function characterizing the quantum state of a light mode. The experimental scheme is based on the representation of the Wigner function as an expectation value of a displaced photon number parity operator
The Hong-Ou-Mandel (HOM) experiment was a benchmark in quantum optics, evidencing the quantum nature of the photon. In order to go deeper, and obtain the complete information about the quantum state of a system, for instance, composed by photons, the
We present an experimental realisation of the direct scheme for measuring the Wigner function of a single quantized light mode. In this method, the Wigner function is determined as the expectation value of the photon number parity operator for the phase space displaced quantum state.
Image denoising is a well-known and well studied problem, commonly targeting a minimization of the mean squared error (MSE) between the outcome and the original image. Unfortunately, especially for severe noise levels, such Minimum MSE (MMSE) solutio
Quantum engineering now allows to design and construct multi-qubit states in a range of physical systems. These states are typically quite complex in nature, with disparate, but relevant properties that include both single and multi-qubit coherences