ﻻ يوجد ملخص باللغة العربية
We review current understanding of kilonova/macronova emission from compact binary mergers (mergers of two neutron stars or a neutron star and a black hole). Kilonova/macronova is optical and near-infrared emission powered by radioactive decays of r-process nuclei. Emission from the dynamical ejecta with ~0.01 Msun is likely to have a luminosity of ~10^{40}-10^{41} erg s^{-1} with a characteristic timescale of about 1 week. The spectral peak is located in red optical or near-infrared wavelengths. A subsequent accretion disk wind may provide an additional luminosity, or an earlier/bluer emission if it is not absorbed by the precedent dynamical ejecta. The detection of near-infrared excess in the afterglow of short GRB 130603B and possible optical excess in GRB 060614 supports the concept of the kilonova/macronova scenario. At 200 Mpc distance, a typical brightness of kilonova/macronova with 0.01 Msun ejecta is expected to be about 22 mag and the emission rapidly fades to >24 mag within ~10 days after the merger. Kilonova/macronova candidates can be distinguished from supernovae by (1) the faster time evolution, (2) fainter absolute magnitudes, and (3) redder colors. To effectively search for such objects, follow-up survey observations with multiple visits within <10 days and with multiple filters will be important. Since the high expansion velocity (v ~ 0.1-0.2c) is a robust outcome of compact binary mergers, the detection of smooth spectra will be the smoking gun to conclusively identify the GW source.
We present radiative transfer simulations for blue kilonovae hours after neutron star (NS) mergers by performing detailed opacity calculations for the first time. We calculate atomic structures and opacities of highly ionized elements (up to the tent
The advent of multi-messenger astronomy has allowed for new types of source searches by neutrino detectors. We present the results of the first search for 0.5 - 5 GeV astrophysical neutrinos emitted from all compact binary mergers, i.e., binary black
The first detection of a binary neutron star merger through gravitational waves and photons marked the dawn of multi-messenger astronomy with gravitational waves, and it greatly increased our insight in different fields of astrophysics and fundamenta
During a compact binary merger involving at least one neutron star, a small fraction of the gravitational energy could be liberated in such a way to accelerate a small fraction (~ 10^-6) of the neutron star mass in an isotropic or quasi-isotropic way
The recent discovery of a faint gamma-ray burst (GRB) coincident with the gravitational wave (GW) event GW 170817 revealed the existence of a population of low-luminosity short duration gamma-ray transients produced by neutron star mergers in the nea