ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for Highly Dispersed Fast Radio Bursts in Three Parkes Multibeam Surveys

96   0   0.0 ( 0 )
 نشر من قبل Fronefield Crawford
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have searched three Parkes multibeam 1.4 GHz surveys for the presence of fast radio bursts (FRBs) out to a dispersion measure (DM) of 5000 pc cm$^{-3}$. These surveys originally targeted the Magellanic Clouds (in two cases) and unidentified gamma-ray sources at mid-Galactic latitudes (in the third case) for new radio pulsars. In previous processing, none of these surveys were searched to such a high DM limit. The surveys had a combined total of 719 hr of Parkes multibeam on-sky time. One known FRB, 010724, was present in our data and was detected in our analysis but no new FRBs were found. After adding in the on-sky Parkes time from these three surveys to the on-sky time (7512 hr) from the five Parkes surveys analysed by Rane et al., all of which have now been searched to high DM limits, we improve the constraint on the all-sky rate of FRBs above a fluence level of 3.8 Jy ms at 1.4 GHz to $R = 3.3^{+3.7}_{-2.2} times 10^{3}$ events per day per sky (at the 99% confidence level). Future Parkes surveys that accumulate additional multibeam on-sky time (such as the ongoing high-resolution Parkes survey of the LMC) can be combined with these results to further constrain the all-sky FRB rate.

قيم البحث

اقرأ أيضاً

Recently, there have been reports of six bright, dispersed bursts of coherent radio emission found in pulsar surveys with the Parkes Multi-beam Receiver. Not much is known about the progenitors of these bursts, but they are highly-energetic, and prob ably of extragalactic origin. Their properties suggest extreme environments and interesting physics, but in order to understand and study these events, more examples need to be found. Fortunately, the recent boom in radio astronomy means many next-generation radio telescopes are set to begin observing in the near future. In this paper we discuss the prospects of detecting short extragalactic bursts, in both beamformed and imaging data, using these instruments. We find that often the volume of space probed by radio surveys of fast transients is limited by the dispersion measure (DM) of the source, rather than its physical distance (although the two quantities are related). This effect is larger for low-frequency telescopes, where propagation effects are more prominent, but, their larger fields-of-view are often enough to compensate for this. Our simulations suggest that the low-frequency component of SKA1 could find an extragalactic burst every hour. We also show that if the sensitivity of the telescope is above a certain threshold, imaging surveys may prove more fruitful than beamformed surveys in finding these sorts of transients.
In this paper we identify some sub-optimal performance in algorithms that search for Fast Radio Bursts (FRBs), which can reduce the cosmological volume probed by over 20%, and result in missed discoveries and incorrect flux density and sky rate deter minations. Re-calculating parameters for all of the FRBs discovered with the Parkes telescope (i.e. all of the reported FRBs bar one), we find some inconsistencies with previously determined values, e.g. FRB 010125 was approximately twice as bright as previously reported. We describe some incompleteness factors not previously considered which are important in determining accurate population statistics, e.g. accounting for fluence incompleteness the Thornton et al. all-sky rate can be re-phrased as ~2500 FRBs per sky per day above a 1.4-GHz fluence of ~2 Jy ms. Finally we make data for the FRBs easily available, along with software to analyse these.
136 - X. Yang , S.-B. Zhang , J.-S. Wang 2021
We have searched for weak fast radio burst (FRB) events using a database containing 568,736,756 transient events detected using the Parkes radio telescope between 1997 and 2001. In order to classify these pulses, and to identify likely FRB candidates , we used a machine learning algorithm based on ResNet. We identified 81 new candidate FRBs and provide details of their positions, event times, and dispersion measures. These events were detected in only one beam of the Parkes multibeam receiver. We used a relatively low S/N cutoff threshold when selecting these bursts and some have dispersion measures only slightly exceeding the expected Galactic contribution. We therefore present these candidate FRBs as a guide for follow-up observations in the search for repeating FRBs.
We report on the first millisecond timescale radio interferometric search for the new class of transient known as fast radio bursts (FRBs). We used the Very Large Array (VLA) for a 166-hour, millisecond imaging campaign to detect and precisely locali ze an FRB. We observed at 1.4 GHz and produced visibilities with 5 ms time resolution over 256 MHz of bandwidth. Dedispersed images were searched for transients with dispersion measures from 0 to 3000 pc/cm3. No transients were detected in observations of high Galactic latitude fields taken from September 2013 though October 2014. Observations of a known pulsar show that images typically had a thermal-noise limited sensitivity of 120 mJy/beam (8 sigma; Stokes I) in 5 ms and could detect and localize transients over a wide field of view. Our nondetection limits the FRB rate to less than 7e4/sky/day (95% confidence) above a fluence limit of 1.2 Jy-ms. Assuming a Euclidean flux distribution, the VLA rate limit is inconsistent with the published rate of Thornton et al. We recalculate previously published rates with a homogeneous consideration of the effects of primary beam attenuation, dispersion, pulse width, and sky brightness. This revises the FRB rate downward and shows that the VLA observations had a roughly 60% chance of detecting a typical FRB and that a 95% confidence constraint would require roughly 500 hours of similar VLA observing. Our survey also limits the repetition rate of an FRB to 2 times less than any known repeating millisecond radio transient.
The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involv e highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within $sim$ 140 s. The data were searched for pulses up to 5000 pc $rm cm^{-3}$ in dispersion measure and pulse widths ranging from 640 $rm mu$s to 25.60 ms. We did not detect any events $rm geq 6 sigma$. An in-depth statistical analysis of our data shows that events detected above $rm 5 sigma$ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا