ﻻ يوجد ملخص باللغة العربية
We carried out observations of pulsar PSR B1919+21 at 324 MHz to study the distribution of interstellar plasma in the direction of this pulsar. We used the RadioAstron (RA) space radiotelescope together with two ground telescopes: Westerbork (WB) and Green Bank (GB). The maximum baseline projection for the space-ground interferometer was about 60000 km. We show that interstellar scintillation of this pulsar consists of two components: diffractive scintillations from inhomogeneities in a layer of turbulent plasma at a distance $z_{1} = 440$ pc from the observer or homogeneously distributed scattering material to pulsar; and weak scintillations from a screen located near the observer at $z_{2} = 0.14 pm 0.05$ pc. Furthermore, in the direction to the pulsar we detected a prism that deflects radiation, leading to a shift of observed source position. We show that the influence of the ionosphere can be ignored for the space-ground baseline. Analysis of the spatial coherence function for the space-ground baseline (RA-GB) yielded the scattering angle in the observer plane: $theta_{scat}$ = 0.7 mas. An analysis of the time-frequency correlation function for weak scintillations yielded the angle of refraction in the direction to the pulsar: $theta_{ref, 0}$ = 110 ms and the distance to the prism $z_{prism} le 2$ pc.
We use observations from the Boolardy Engineering Test Array (BETA) of the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to search for transient radio sources in the field around the intermittent pulsar PSR J1107-5907. The pulsar is
In this paper, we report our investigation of pulsar scintillation phenomena by monitoring PSR B0355$+$54 at 2.25 GHz for three successive months using emph{Kunming 40-m radio telescope}. We have measured the dynamic spectrum, the two-dimensional cor
The time delay experienced by a light ray as it passes through a changing gravitational potential by a non-zero mass distribution along the line of sight is usually referred to as Shapiro delay. Shapiro delay has been extensively measured in the Sola
High-resolution observations by visible and near-infrared interferometers of both single stars and binaries have made significant contributions to the foundations that underpin many aspects of our knowledge of stellar structure and evolution for cool
The Argentine Institute of Radio astronomy (IAR) is equipped with two single-dish 30-m radio antennas capable of performing daily observations of pulsars and radio transients in the southern hemisphere at 1.4 GHz. We aim to contribute to pulsar timin