ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce and study the Non-Uniform k-Center problem (NUkC). Given a finite metric space $(X,d)$ and a collection of balls of radii ${r_1geq cdots ge r_k}$, the NUkC problem is to find a placement of their centers on the metric space and find the minimum dilation $alpha$, such that the union of balls of radius $alphacdot r_i$ around the $i$th center covers all the points in $X$. This problem naturally arises as a min-max vehicle routing problem with fleets of different speeds. The NUkC problem generalizes the classic $k$-center problem when all the $k$ radii are the same (which can be assumed to be $1$ after scaling). It also generalizes the $k$-center with outliers (kCwO) problem when there are $k$ balls of radius $1$ and $ell$ balls of radius $0$. There are $2$-approximation and $3$-approximation algorithms known for these problems respectively; the former is best possible unless P=NP and the latter remains unimproved for 15 years. We first observe that no $O(1)$-approximation is to the optimal dilation is possible unless P=NP, implying that the NUkC problem is more non-trivial than the above two problems. Our main algorithmic result is an $(O(1),O(1))$-bi-criteria approximation result: we give an $O(1)$-approximation to the optimal dilation, however, we may open $Theta(1)$ centers of each radii. Our techniques also allow us to prove a simple (uni-criteria), optimal $2$-approximation to the kCwO problem improving upon the long-standing $3$-factor. Our main technical contribution is a connection between the NUkC problem and the so-called firefighter problems on trees which have been studied recently in the TCS community.
The Non-Uniform $k$-center (NUkC) problem has recently been formulated by Chakrabarty, Goyal and Krishnaswamy [ICALP, 2016] as a generalization of the classical $k$-center clustering problem. In NUkC, given a set of $n$ points $P$ in a metric space a
In this paper we initiate the study of the heterogeneous capacitated $k$-center problem: given a metric space $X = (F cup C, d)$, and a collection of capacities. The goal is to open each capacity at a unique facility location in $F$, and also to assi
We consider the generalized $k$-server problem on uniform metrics. We study the power of memoryless algorithms and show tight bounds of $Theta(k!)$ on their competitive ratio. In particular we show that the textit{Harmonic Algorithm} achieves this co
We study the Capacitated k-Median problem, for which all the known constant factor approximation algorithms violate either the number of facilities or the capacities. While the standard LP-relaxation can only be used for algorithms violating one of t
The Densest $k$-Subgraph (D$k$S) problem, and its corresponding minimization problem Smallest $p$-Edge Subgraph (S$p$ES), have come to play a central role in approximation algorithms. This is due both to their practical importance, and their usefulne