ﻻ يوجد ملخص باللغة العربية
Since the emergence of monolayer graphene as a promising two-dimensional material, many other monolayer and few-layer materials have been investigated extensively. An experimental study of few-layer Si2Te3 was recently reported, showing that the material has diverse properties for potential applications in Si-based devices ranging from fully integrated thermoelectrics to optoelectronics to chemical sensors. This material has a unique layered structure: it has a hexagonal closed-packed Te sublattice, with Si dimers occupying octahedral intercalation sites. Here we report a theoretical study of this material in both bulk and monolayer form, unveiling a fascinating array of diverse properties arising from reorientations of the silicon dimers between planes of Te atoms. The lattice constant varies up to 5% and the band gap varies up to 40% depending on dimer orientations. The monolayer band gap is 0.4 eV larger than the bulk-phase value for the lowest-energy configuration of Si dimers. These properties are, in principle, controllable by temperature and strain, making Si2T3 a promising candidate material for nanoscale mechanical, optical, and memristive devices.
Magnetism in lanthanum cobaltite (LCO, LaCoO$_3$) appears to be strongly dependent on strain, defects, and nanostructuring. LCO on strontium titanate (STO, SrTiO$_3$) is a ferromagnet with an interesting strain relaxation mechanism that yields a latt
We report diffusion quantum Monte Carlo (DMC) and many-body $GW$ calculations of the electronic band gaps of monolayer and bulk hexagonal boron nitride (hBN). We find the monolayer band gap to be indirect. $GW$ predicts much smaller quasiparticle gap
The presence in the graphyne sheets of a variable amount of sp2/sp1 atoms, which can be transformed into sp3-like atoms by covalent binding with one or two fluorine atoms, respectively, allows one to assume the formation of fulorinated graphynes (flu
Anisotropic materials, with orientation-dependent properties, have attracted more and more attention due to their compelling tunable and flexible performance in electronic and optomechanical devices. So far, two-dimensional (2D) black phosphorus show
To date, germanene has only been synthesized on metallic substrates. A metallic substrate is usually detrimental for the two-dimensional Dirac nature of germanene because the important electronic states near the Fermi level of germanene can hybridize