ﻻ يوجد ملخص باللغة العربية
The rule-based OWL reasoning is to compute the deductive closure of an ontology by applying RDF/RDFS and OWL entailment rules. The performance of the rule-based OWL reasoning is often sensitive to the rule execution order. In this paper, we present an approach to enhancing the performance of the rule-based OWL reasoning on Spark based on a locally optimal executable strategy. Firstly, we divide all rules (27 in total) into four main classes, namely, SPO rules (5 rules), type rules (7 rules), sameAs rules (7 rules), and schema rules (8 rules) since, as we investigated, those triples corresponding to the first three classes of rules are overwhelming (e.g., over 99% in the LUBM dataset) in our practical world. Secondly, based on the interdependence among those entailment rules in each class, we pick out an optimal rule executable order of each class and then combine them into a new rule execution order of all rules. Finally, we implement the new rule execution order on Spark in a prototype called RORS. The experimental results show that the running time of RORS is improved by about 30% as compared to Kim & Parks algorithm (2015) using the LUBM200 (27.6 million triples).
Our concern is the overhead of answering OWL 2 QL ontology-mediated queries (OMQs) in ontology-based data access compared to evaluating their underlying tree-shaped and bounded treewidth conjunctive queries (CQs). We show that OMQs with bounded-depth
We propose hMDAP, a hybrid framework for large-scale data analytical processing on Spark, to support multi-paradigm process (incl. OLAP, machine learning, and graph analysis etc.) in distributed environments. The framework features a three-layer data
The objective of this work was to utilize BigBench [1] as a Big Data benchmark and evaluate and compare two processing engines: MapReduce [2] and Spark [3]. MapReduce is the established engine for processing data on Hadoop. Spark is a popular alterna
The need for modern data analytics to combine relational, procedural, and map-reduce-style functional processing is widely recognized. State-of-the-art systems like Spark have added SQL front-ends and relational query optimization, which promise an i
Materialisation is often used in RDF systems as a preprocessing step to derive all facts implied by given RDF triples and rules. Although widely used, materialisation considers all possible rule applications and can use a lot of memory for storing th