ﻻ يوجد ملخص باللغة العربية
What effect do particle-emitting resonances have on the scattering cross section? What physical considerations are necessary when modelling these resonances? These questions are important when theoretically describing scattering experiments with radioactive ion beams which investigate the frontiers of the table of nuclides, far from stability. Herein, a novel method is developed that describes resonant nuclear scattering from which centroids and widths in the compound nucleus are obtained when one of the interacting bodies has particle unstable resonances. The method gives cross sections without unphysical behavior that is found if simple Lorentzian forms are used to describe resonant target states. The resultant cross sections differ significantly from those obtained when the states in the coupled channel calculations are taken to have zero width, and compound-system resonances are better matched to observed values.
We describe bound states, resonances and elastic scattering of light ions using a $delta$-shell potential. Focusing on low-energy data such as energies of bound states and resonances, charge radii, asymptotic normalization coefficients, effective-ran
The inclusive breakup of three-fragment projectiles is discussed within a four-body spectator model. Both the elastic breakup and the non-elastic breakup are obtained in a unified framework. Originally developed in the 80s for two-fragment projectile
Based on the Hartree-Fock-Bogoliubov solutions in large deformed coordinate spaces, the finite amplitude method for quasiparticle random phase approximation (FAM-QRPA) has been implemented, providing a suitable approach to probe collective excitation
The influence on the fusion process of coupling to collective degrees of freedom has been explored. The significant enhancement of he fusion cross setion at sub-barrier energies was understood in terms of the dynamical processes arising from strong c
The isospin breaking effects due to the Coulomb interaction in weakly-bound nuclei are studied using the Gamow Shell Model, a complex-energy configuration interaction approach which simultaneously takes into account many-body correlations between val